期刊文献+

空间LEMP的远场近似特性

The approximation characteristics of spatial LEMP in far-field
下载PDF
导出
摘要 为了模拟远区空间雷电电磁脉冲场,以便开展空间电子信息装备在空中受雷电电磁场影响研究,本文对远场区空间雷电电磁脉冲场的波形特征进行分析,从理论上探索了远场区空中不同高度处雷电电磁脉冲场与回击通道底部电流之间的相互关系。通过理论推导和近似处理,得到了基于传输线模型的远场区空间雷电电磁脉冲场和回击通道底部电流之间的关系。对比雷电电磁场的精确表达式与近似表达式描绘的波形,结果表明:远场区距离地面一定高度的空间雷电电磁场波形与回击通道底部电流波形存在局域特征近似性,且二者之间近似关系的适用高度随着水平距离的增大而近似线性增大。 In order to simulate the lightning electromagnetic pulse field in far-field to carry out the research on the influence of the electronic information equipment by the lightning electromagnetic field in the sky, the author conducts a further analysis on the characteristics of spatial LEMP waveform, and theoretically makes a research on the correlation between the LEMP and the lightning return stroke channel base current in different levels. Through theoretical derivation and approximation, the author concludes the relations between spatial LEMP and return stroke channel base current in the far field based on the TL model. Compareing the waveforms of the exact expressions and approximate expressions of the lightning electromagnetic field, it is concluded that the waveform of the spatial LEMP in the far-field, which has a certain distance with the earth, and the waveform of the return stroke channel base current are similar locally. And the suitable height of their approximate relations increased with the increasing of horizontal distance, tending to act as a linear increasing.
作者 王李鹏 王晓嘉 Wang Lipeng;Wang Xiaojia(Jiuquan Satellite Launch Center,Lanzhou 732750;Northwest Institute of Nuclear Technology,Xi'an 710024)
出处 《电气技术》 2018年第10期10-15,22,共7页 Electrical Engineering
基金 国家自然科学基金资助项目(51377171)
关键词 雷电电磁脉冲场 回击通道底部电流 远场 近似 线性 传输线模型 LEMP lightning return stroke channel base current far-field approximate linearly TL model
  • 相关文献

参考文献8

二级参考文献67

  • 1张岩,刘福贵,汪友华,王川川,刘荣美.改进的双指数函数雷电流波形及其辐射电磁场的计算[J].电工技术学报,2013,28(S2):133-139. 被引量:16
  • 2郭立新,徐燕,吴振森.分形粗糙海面高斯波束散射特性模拟[J].电子学报,2005,33(3):534-537. 被引量:4
  • 3[1]M. A. Uman, D. K. McLain, and E. P. Krider. The electromagnetic radiation from a finite antenna[J]. A. J. Phys., January 1975, 43: 33~38.
  • 4[2]M. J. Master and M. A. Uman. Transient electric and magnetic fields associated with establishing a finite electrostatic dipole[J]. Am. J. Phys., 1983, 51(2): 118~126.
  • 5[3]V. A. Rakov. Lightning Electromagnetic fields: modeling and measurements[M]. in Proc. 12th Int. Zurich Symp. Electromagn. Compat., Zurich, Switzerland, Feb. 1997: 59~64.
  • 6[4]V. A. Rakov and M. A. Uman. Review and evaluation of lightning return stroke models including some aspects of their application[J]. IEEE Trans. Electromagn. Compat., November 1998, 40(4): 403~426.
  • 7[5]C. E. R. Bruce and R. H. Golde. The lightning discharge[J]. Inst. Elec. Eng.-Pt. 2, 1941, 88: 487~520.
  • 8[6]F. Heilder, Traveling current source model for LEMP calculation[M]. in Proc. 6th Int. Zurich Symp. Electromagn. Compat., Zurich, Switzerland, Mar. 1985: 157~162.
  • 9[7]F. Heidler, J. M. Cvetic′, and B. V. Stanic′, Calculation of lightning current parameters[J].IEEE. Trans. Power Delivery, April 1999, 14(2): 399~404.
  • 10[8]C. A. Nucci, G. Diendorfer and M. A. Uman, F. Rachidi, M. Ianoz, and C. Mazzetti. Lightning return stroke current models with specified channel-base current: a review and comparison[J]. Geophys. Res., 1990, 95: 20395~20408.

共引文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部