期刊文献+

基于随机游走算法的交通诱导小区划分方法 被引量:1

Traffic guidance cell division based on random walk algorithm
下载PDF
导出
摘要 为提高可变信息板选址的精确度以及交通诱导的效益,从交通诱导的角度应用随机游走算法对交通诱导小区划分进行了研究。将城市路网以路段为节点映射为复杂网络图,在对网络进行分析的基础上,构建了网络图的拉普拉斯矩阵,并利用组合狄利克雷问题的求解方法对模型进行求解。以沈阳市某路网为实例,验证了模型的可行性。 In order to improve the accuracy of location selection of the variable information board and improve the benefit of traffic guidance,the urban road network is divided from the point of view of traffic induction using random walk algorithm.Based on the analysis of the network built by taking road section as node,the Laplacian matrix of the network graph is constructed.Then,the model is solved by the method of solving the combining Dirichlet problem.Taking Shenyang Road Network as an example,the feasibility of the proposed model is verified.
作者 刘翔宇 杨庆芳 隗海林 LIU Xiang-yu1 , YANG Qing-fang1,2 , KUI Hai-lin1(1. College of Transportation, Jilin University, Changchun 130022, China ;2. State Key Laboratory of Automotive Simulation and Control, Jilin University ,Changchun 130022,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2018年第5期1380-1386,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 "十二五"国家科技支撑计划项目(2014BAG03B03)
关键词 交通运输系统工程 随机游走 交通诱导小区划分 组合狄利克雷问题 engineering of communications and transportation system random walk traffic guidance cell division combination of Dirichlet problen
  • 相关文献

参考文献2

二级参考文献18

  • 1章昭辉,闫春钢,丁志军,蒋昌俊.交通信息网格中的最短出行路径并行算法[J].同济大学学报(自然科学版),2006,34(12):1606-1611. 被引量:3
  • 2Dean J, Ghemawat S.MapReduce:Simplified Data Processing on Large Clusters [C]//Proc. of the 6th Symposium on Operating Sys- tems Design and Implementation. San Francisco,U.SA:[s.n.],2004.
  • 3Cutting D.Scalable Computing with MapReduce[C]//Proc. of O' Reilly Open Source Convention. Poland:[s.n.], 2005.
  • 4Tan G Z, Ping X H. A Parallel Algorithm for Computing Shortest Paths In Large-Scale Networks [C]//Proe. of The 5th International Conference on Computational Science. Atlanta,GA,USA: [s.n.], 2005.
  • 5Tan G Z, Li D, Ping X H, et al.Network-Tree Routing Model for Large Scale Networks:Theories and Algorithms//Proc. of The 4th International Conference on Networking.Reunion Island,France: [s. n.],2005.
  • 6Dean J. Experiences with mapreduce,an abstraction for large- scale computation [C]//Proc. of PACT'06. Washington D.C.,USA: [s.n.],2006.
  • 7Yang H C, Dasdan A, Hsiao R L,et al.Map-reduce-merge:sim- plified relational data processing on large clusters [C] //Proc. of 2007 ACM SIGMOD Conference,2007.
  • 8Cohen J. Graph Twiddling in a MapReduce World[J]. Computing in Science & Engineering,2009,11(4):29--41.
  • 9Borthakur D. The Hadoop Distributed File System:Architecture and Design[EB/OL]. http://hadoop.apache.org/common/docs/r0.18.0/ hdfs_design.pdf, 2007.
  • 10Plimpton Steven J, Devine Karen D. MapReduce in MPI [or large-scale graph algorithms [J]. Parallel Computing, 2011,37.-610-632.

共引文献10

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部