期刊文献+

Insights into the Temporal Gene Expression Pattern in Lymantria dispar Larvae During the Baculovirus Induced Hyperactive Stage 被引量:1

Insights into the Temporal Gene Expression Pattern in Lymantria dispar Larvae During the Baculovirus Induced Hyperactive Stage
原文传递
导出
摘要 Baculoviruses are effective biological control agents for many insect pests. They not only efficiently challenge the host immune system but also make them hyperactive for better virus dispersal. Some investigations have focused on the viral mechanisms for induction of such altered response from the host. However, there are no current studies monitoring changes in gene expression during this altered phenotype in infected larvae. The L. dispar multiple nucleopolyhedrovirus(Ld MNPV) induces hyperactivity in third instar L. dispar larvae at 3-days post infection(dpi), to continued till 6 dpi. The transcriptome profiles of the infected and uninfected larvae at these time points were analyzed to provide new clues on the response of the larvae towards infection during hyperactivity. Gene ontology enrichment analysis revealed, most of the differentially expressed genes(DEGs) were involved in proteolysis, extracellular region, and serine-type endopeptidase activity. Similarly, Kyoto Encyclopedia of Genes and Genome enrichment analysis showed maximum enrichment of 487 genes of the signal transduction category and neuroactive ligand–receptor interaction sub-category with 85 annotated genes. In addition, enrichment map visualization of gene set enrichment analysis showed the coordinated response of neuroactive ligand–receptor interaction genes with other functional gene sets, as an important signal transduction mechanism during the hyperactive stage. Interestingly all the DEGs in neuroactive ligand–receptor interactions were serine proteases, their differential expression during the hyperactive stage correlated with their conceivable involvement in disease progression and the resulting altered phenotype during this period. The outcome provides a basic understanding of L. dispar larval responses to Ld MNPV infection during the hyperactive stage and helps to determine the important host factors involved in this process. Baculoviruses are effective biological control agents for many insect pests. They not only efficiently challenge the host immune system but also make them hyperactive for better virus dispersal. Some investigations have focused on the viral mechanisms for induction of such altered response from the host. However, there are no current studies monitoring changes in gene expression during this altered phenotype in infected larvae. The L. dispar multiple nucleopolyhedrovirus (LdMNPV) induces hyperactivity in third instar L. dispar larvae at 3-days post infection (dpi), to continued till 6 dpi. The transcriptome profiles of the infected and uninfected larvae at these time points were analyzed to provide new clues on the response of the larvae towards infection during hyperactivity. Gene ontology enrichment analysis revealed, most of the differentially expressed genes (DEGs) were involved in proteolysis, extracellular region, and serine-type endopeptidase activity. Similarly, Kyoto Encyclopedia of Genes and Genome enrichment analysis showed maximum enrichment of 487 genes of the signal transduction category and neuroactive ligand-receptor interaction sub-category with 85 annotated genes. In addition, enrichment map visualization of gene set enrichment analysis showed the coordinated response of neuroactive ligand-receptor interaction genes with other functional gene sets, as an important signal transduction mech- anism during the hyperactive stage. Interestingly all the DEGs in neuroactive ligand-receptor interactions were serine proteases, their differential expression during the hyperactive stage correlated with their conceivable involvement in disease progression and the resulting altered phenotype during this period. The outcome provides a basic understanding of L. dispar larval responses to LdMNPV infection during the hyperactive stage and helps to determine the important host factors involved in this process.
出处 《Virologica Sinica》 SCIE CAS CSCD 2018年第4期345-358,共14页 中国病毒学(英文版)
基金 supported by NSFC Grant(31670659) Special Fund for Forest Scientific Research in the Public Welfare(201404403-09) Shaanxi Provincial Science and Technology Innovation Project(2014KTCL02-14)
关键词 基因本体论 时间点 过度 幼虫 表示模 舞台 相互作用 地图可视化 Gypsy moth Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) Hyperactivity - Gene expression pattern
  • 相关文献

同被引文献5

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部