摘要
本文提出了一种基于综合学习策略的多目标分解粒子群算法(D-CLMOPSO),该算法采用综合学习策略对多目标问题进行求解,从而避免早熟收敛;通过分解方法更新主导粒子以增强解的分布;采用存档机制以存储优化过程中的非支配解,并采用多项式变异来避免陷入局部最优.最后将所提出的方法与三种多目标进化算法进行比较,结果表明所提算法在大多数测试问题上具有良好的性能.
In this paper, a multi-objective decomposition particle swarm optimization algorithm (I)-CLMOPSO) based on comprehensive learning strategy is proposed, which uses a comprehensive learning strategy to solve multi- objective problems, so as to avoid premature convergence. The dominant particles are updated by decomposition to enhance the solution Distributiom Archiving mechanism to store the non-dominated solution in the optimization process, and using polynomial variation to avoid falling into the local optimurru Finally, the proposed method is compared with the three multi-objective evolutionary algorithms. The results show that the proposed algorithm has good performance on most of the test problems.
作者
陈跃刚
许奕
CHEN Yue-gang;XU Yi(SILC Business School,Shanghai University,Shanghai 201899,China)
出处
《微电子学与计算机》
CSCD
北大核心
2018年第10期75-79,共5页
Microelectronics & Computer
基金
教育部人文社科规划项目(12YJA790013)
关键词
多目标
全面学习
粒子群优化
多目标优化分解
multiple target
comprehensive learning
particle swarm optimization
multi-objective optimization de- composition