期刊文献+

基于综合学习策略的多目标分解粒子群算法 被引量:2

Multi-objective Decomposition Particle Swarm Optimization Algorithm Based on Comprehensive Learning Strategy
下载PDF
导出
摘要 本文提出了一种基于综合学习策略的多目标分解粒子群算法(D-CLMOPSO),该算法采用综合学习策略对多目标问题进行求解,从而避免早熟收敛;通过分解方法更新主导粒子以增强解的分布;采用存档机制以存储优化过程中的非支配解,并采用多项式变异来避免陷入局部最优.最后将所提出的方法与三种多目标进化算法进行比较,结果表明所提算法在大多数测试问题上具有良好的性能. In this paper, a multi-objective decomposition particle swarm optimization algorithm (I)-CLMOPSO) based on comprehensive learning strategy is proposed, which uses a comprehensive learning strategy to solve multi- objective problems, so as to avoid premature convergence. The dominant particles are updated by decomposition to enhance the solution Distributiom Archiving mechanism to store the non-dominated solution in the optimization process, and using polynomial variation to avoid falling into the local optimurru Finally, the proposed method is compared with the three multi-objective evolutionary algorithms. The results show that the proposed algorithm has good performance on most of the test problems.
作者 陈跃刚 许奕 CHEN Yue-gang;XU Yi(SILC Business School,Shanghai University,Shanghai 201899,China)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第10期75-79,共5页 Microelectronics & Computer
基金 教育部人文社科规划项目(12YJA790013)
关键词 多目标 全面学习 粒子群优化 多目标优化分解 multiple target comprehensive learning particle swarm optimization multi-objective optimization de- composition
  • 相关文献

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部