期刊文献+

基于改进多胞形观测器的桨距执行器故障诊断 被引量:4

Fault Diagnosis of Pitch Actuator Using Improved Polytope Observer
原文传递
导出
摘要 针对非线性风力机系统故障诊断受到干扰、噪声影响的问题,设计改进多胞形未知输入观测器,实现桨距执行器的故障诊断.首先,基于风力机线性变参数模型,设计多胞形未知输入观测器实现干扰项的解耦;其次,考虑到噪声的影响,利用卡尔曼滤波器算法增强对噪声的鲁棒性;然后,采用均方根法设计阈值进行残差评估,从而确定故障发生与否.最后,通过风力机桨距执行器系统故障残差信号的仿真,验证改进多胞形未知输入观测器的性能. We investigate the fault diagnosis of nonlinear wind-turbine systems with disturbance and noise, and design an improved polytope unknown input observer to diagnose faults in the pitch actuator. First, to decouple the interference term, we design a polytope unknown input observer based on a linear variable parameter model of the wind turbine. Next, considering the influence of noise, we use a Kalman filter algorithm to enhance robustness to noise. Then, we used the mean square method to design a threshold for evaluating the residual, which detemines whether or not a fault occurs. Lastly, we verify the performance of the improved polytope hull-type unknown input observer by simulating the fault residual signal of the wind-turbine pitch-actuator system.
作者 吴定会 刘稳 张秀丽 WU Dinghui;LIU Wen;ZHANG Xiuli(Key Laboratory of Advanced Process Control for Light Industry,Jiangnan University,Wuxi 214122,China;Wuxi Institute of Technology,Wuxi 214122,China)
出处 《信息与控制》 CSCD 北大核心 2018年第5期534-540,共7页 Information and Control
基金 国家自然科学基金资助项目(61572237)
关键词 线性变参数 多胞形未知输入观测器 干扰解耦 故障诊断 linear parameter varying polytope unknown inputobserver interference decoupling fault diagnosis
  • 相关文献

参考文献8

二级参考文献73

  • 1袁志坚,孙才新,李爱华,李剑,廖瑞金.模糊多属性决策方法评价变压器状态维修策略[J].高电压技术,2004,30(8):33-35. 被引量:19
  • 2雷亚洲,Gordon Lightbody.风力发电与电力市场[J].电力系统自动化,2005,29(10):1-5. 被引量:56
  • 3吴爱国,段广仁.广义线性系统基于PI观测器鲁棒极点配置分离原理[J].应用数学,2007,20(4):771-776. 被引量:2
  • 4Wang X, Wang Y, Ji Z C, et al. Design of two-frequency-loop robust fault tolerant controller for wind energy conversion sys- tem[C]//Proceedings of the 5th IEEE Conference on Industrial Electronic and Application. Piscataway, NJ, USA: IEEE, 2010: 718-723.
  • 5Sloth C, Esbensen T, Stoustrup J. Active and passive fault- tolerant LPV control of wind turbines[C]//Proceedings of 2010 American Control Conference, Marriott Waterfront. Piscat- away, NJ, USA: IEEE, 2010: 4640-4646.
  • 6Takagi T, Sugeno M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on System, Man, and Cybernetics, 1985, 15(2): 116-132.
  • 7Chadli M, E1 Hajjaji A. Wind energy conversion systems control using T-S fuzzy modeling[C]//Proceedings of the 8th Mediter- ranean Conference on Control & Automation. Piscataway, NJ, USA: IEEE, 2010: 1365-1370.
  • 8Kamal E, Aitouche A, Ghorbani R, et al. Robust fuzzy fault- tolerant control of wind energy conversion systems subject to sensor faults[J]. IEEE Transactions on Sustainable Energy,2012, 3(2): 231-241.
  • 9高胜利,赵小荣,申强.风力发电机组齿轮箱故障诊断[J].电力电了技术,2011,45(10):66-67.
  • 10Bo Y, Xin H. Guaranteed cost reliable control for discrete- time linear systems[C]//the Sixth World Congress on Intel- ligent Control and Automation. Piscataway, NJ, USA: IEEE, 2006: 1294-1298.

共引文献96

同被引文献43

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部