期刊文献+

高强钢热冲压温度场数值模拟及关联度分析 被引量:1

Numerical Simulation and Correlation Analysis of High Strength Steel Hot Stamping Temperature Field
下载PDF
导出
摘要 以平板件为研究对象,基于Abaqus对热冲压成形过程中的板料及模具温度场进行数值模拟研究。基于正交试验的关联度分析,计算出了工艺参数对成形件最大温差、凸凹模最高温度影响趋势的量化值。结果表明:成形件温度分布呈梯度分布,高温区在成形件心部,次边缘及边缘区域温度依次递减;而模具温度分布与板料相反。淬火时间对成形件最大温差、凸凹模温度影响趋势的量化值为0.5874、0.7555、0.7602,板料初始温度对成形件最大温差、凸凹模温度影响趋势的量化值为0.5781、0.7268、0.7339,保压压力对成形件最大温差、凸凹模温度影响趋势的量化值为0.5105、0.6791、0.6828。根据量化值得到淬火时间对成形件最大温差、凸凹模温度的影响最显著,其次是板料初始温度及保压压力。为选取与优化热冲压工艺参数提供了参考。 Taking the flat plate as the research object, based on Abaqus, the numerical simulation of the sheet and mold temperature field in the hot stamping process was carried out. Based on the analysis of the correlation degree of the orthogonal test, the quantified values of the parameters' influence on the maximum temperature difference of the formed part and the maximum temperature of the die were calculated. The results show that the temperature distribution of the forming part is in a gradient distribution, and the high temperature area is in the core, sub edge and edge area of forming components decreases in turn, while the temperature distribution of the die is opposite to the forming components. It provides a reference for selecting and optimizing parameters during hot stamping process.
作者 方志鑫 王敏 李梁 王乐平 徐娇娇 Fang Zhixin;Wang Min;Li Liang;Wang Leping;Xu Jiaojiao(School of Materials Science & Engineering,Hubei University of Automotive Technology,Shiyan 442002,China)
出处 《湖北汽车工业学院学报》 2018年第3期40-45,共6页 Journal of Hubei University Of Automotive Technology
基金 湖北省自然科学基金资助项目(2017CFB587) 湖北省高等学校优秀中青年科技创新团队计划项目(T201518) 汽车动力传动与电子控制湖北省重点实验室(湖北汽车工业学院)开放基金资助项目(ZDK1201601)
关键词 热冲压 温度场 关联度分析 hot stamping temperature field correlation analysis
  • 相关文献

参考文献6

二级参考文献46

  • 1Bariani P F, Bruschi S, Turetta A, et al. Testing formability in the hot stamping of HSS [J]. CIRP Annals Manufacturing Technology, 2008, 57 (1) : 265 - 268.
  • 2Kerstrom P A, Oldenburg M. Studies of the thermo - mechanical material response of a boron steel by inverse modeling [J]. J. Phys. IVFrance, 2004, 120: 625-633.
  • 3Akerstrom P, Wikman B, Oldenburg M. Material parameter estimation for boron steel from simultaneous cooling and corn pression experiments [J]. Modeling and Simulation in Materials Science and Engineering, 2005, (13): 1291- 1308.
  • 4Akerstrom P, Oldenburg M. Austenite decomposition during press hardening of a boron steel - computer simulation and test [J]. Journal of Materials Processing Technology, 2006, 174: 399-406.
  • 5Akerstrom P, Oldenburg M. Numerical simulation of a thermo-mechanical sheet metal forming experiment [A]. Numisheet 2008 [C]. Switzerland, 2008.
  • 6Malek Naderi, Vitoon Uthaisangsuk, Ulrich Prahl, et al. A numerical and experimental investigation into hot stamping of boron alloyed heat treated steels [J]. Metal Forming, 2008, (2): 77-84.
  • 7Merkleinl M, Lechler J. Investigation of the thermo - mechanical properties of hot stamping steels [J]. Journal of Materials Processing Technology, 2006, 177:452-455.
  • 8Oberpriller B, Burkhardt L, Griesbach B. Benchmark 3 - Continuous Press Hardening Part A= Physical Tryout Report [C]. Switzerland: Institute of Virtual Manufacturing, 2008.
  • 9Oberpriller B, Burkhardt L, Griesbach B. Benchmark 3- Continuous Press Hardening Part B: Benchmark Analysis [C]. Switzerland: Institute of Virtual Manufacturing, 2008.
  • 10Turetta A, Bruschi S, Ghiotti A. Investigation of 22MnB5 formability in hot stamping operations [J].Journal of Materials Processing Technology, 2006, (177) : 396 - 400.

共引文献29

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部