摘要
运用Lyapunov函数和半鞅收敛定理,研究了带有Poisson跳的随机延迟微分方程(SDDEJ)在满足局部Lipschitz条件和线性增长条件时,如何保证全局解的唯一存在性,证明了用EM算法和倒向EM算法求解带有Poisson跳的随机延迟微分方程(SDDEJ)所得数值解的几乎必然指数稳定性.
By using Lyapunov function and semimartingale convergence theorems, this paper investigateshow to guarantee the unique existence of the global solution when the stochastic delay differential equations withPoisson jumps (SDDEJ) satisfy- the local Lipschitz condition and the linear growth condition. The almost sure ex-ponential stability of the numerical solutions by EM method and backward EM method for the SDDEJs areproved.
作者
袁玲
唐江花
梁静
YUAN Ling;TANG Jianghua;LIANG Jing(Department of Liberal Education,Anhui Xinhua University,Hefei,Anhui 230088,China)
出处
《平顶山学院学报》
2018年第5期24-31,共8页
Journal of Pingdingshan University
基金
安徽新华学院科研项目(2016zr011)
安徽省重点科研项目(KJ2017A623)