期刊文献+

一类非零元个数最少的谱任意Ray模式

A family of spectrally arbitrary Ray patterns with the minimum number of nonzeros
下载PDF
导出
摘要 针对谱任意问题的研究情况,找到了一个新的非零元个数最少的谱任意Ray模式矩阵,并且用幂零-中心化方法证明了该Ray模式矩阵是谱任意的. Considering on spectrally arbitrary problem,we find a new spectrally arbitrary Ray pattern with the minimum number of nonzeros in this paper. And the Ray pattern is proved to be spectrally arbitrary by using the nilpotent-centralizer method.
作者 邓将武 刘月 DENG Jiangwu;LIU Yue(College of Mathematics and Computer Science,Fuzhou University,Fuzhou,Fujian 350116,China)
出处 《福州大学学报(自然科学版)》 CAS 北大核心 2018年第5期613-619,共7页 Journal of Fuzhou University(Natural Science Edition)
基金 国家自然科学基金资助项目(11471077 11571075)
关键词 Ray模式 幂零-中心化方法 谱任意 Ray pattern nilpotent-centralizer method spectrally arbitrary
  • 相关文献

参考文献1

二级参考文献10

  • 1McDonald J J, Stuart J. Spectrally arbitrary ray pat- terns[J]. Linear Algebra and its Applications, 2008, 429(4) .. 727-734.
  • 2Cavers M S, Kim I J, Shader B L, et al. On determi- ning minimal spectrally arbitrary patterns [J]. Elec- tronic Journal of Linear Algebra, 2005, 13(1): 17.
  • 3Gao Yubin, Shao Yanling. New classes of spectrally arbitrary ray patterns[J]. Linear Algebra and its Ap- plications, 2011, 434(10).. 2140-2148.
  • 4Drew J H, Johnson C R, Olesky D D. Spectrally arbi- trary patterns[J]. Linear Algebra and its Applica- tions, 2000, 308(1): 121-137.
  • 5MacGillivray G, Tifenbaeh R M, Van den Driessche P. Spectrally arbitrary star sign patterns[J]. Linear Algebra and Its Applications, 2005, 400(5) : 99-119.
  • 6Corpuz L, McDonald J J. Spectrally arbitrary zero - nonzero patterns of order 4[J]. Linear and Multilinear Algebra, 2007, 55(3): 249-273.
  • 7Britz T, McDonald J J, Olesky D D, et al. Minimal spectraUy arbitrary sign patterns[J]. SIAM Journal on Matrix Analysis and Applications, 2004, 26(1) : 257- 271.
  • 8Cavers M S, Vander Meulen K N. Spectrally and iner- tially arbitrary sign patterns[J]. Linear Algebra and its Applications, 2005, 394.. 53-72.
  • 9Garnett C, Shader B L. The nilpotent-centralizer method for spctrally arbitrary patterns[J]. Linear Algebra and its Applications, 2013, 438(10) : 3836- 3850.
  • 10Bergsma H, Vander Meulen K N, Van Tuyl A. Po- tentially nilpotent patterns and the nilpotent-jacobian- method[J]. Linear Algebra and Its Applications, 2012, 436(12): 4433-4445.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部