期刊文献+

基于深搜算法的手机外壳刮擦痕迹检测

Scratches Detection of Mobile Phone Shell Based on Deep Searching Algorithm
下载PDF
导出
摘要 运用形态学滤波算法和自适应二值化算法对手机外壳图像进行预处理,同时提出了一种深搜算法,沿着手机外壳刮痕的方向进行搜索,增加了检测的鲁棒性和敏感性,在具有复杂表面纹理干扰的情况下仍然能够有效地对手机外壳微小刮痕进行检测.经过实验验证,刮痕检测精度可以达到0. 05 mm,漏检率和轮廓检测缺失概率分别为4. 0%和5. 3%. Morphological filtering algorithm and adaptive binarization algorithm were used to preprocess the mobile phone shell image. At the same time, a deep searching algorithm was proposed,which can search in the direction of scratching the mobile phone shell. It further increases the robustness and sensitivity of detection and effectively detect the tiny scratches of the mobile phone shell even with the interference of the complex surface texture. The experimental results show that the precision of scratch detection can reach 0.05 mm, the missed detection rate and the missing probability of contour detection are 4% and 5.3%.
作者 栾松宇 周文举 孔清清 郭鹏 徐宗鑫 LUAN Songyu;ZHOU Wenju;KONG Qingqing;GUO Peng;XU Zongxin(School of Information and Electrical Engineering,Ludong Unive~'sity,Yantai 264039,China)
出处 《鲁东大学学报(自然科学版)》 2018年第4期309-313,326,共6页 Journal of Ludong University:Natural Science Edition
基金 烟台市科技计划项目(2017ZH061)
关键词 机器视觉 刮痕检测 系统设计和研究 图像处理 machine vision scratch detection system design and research image processing
  • 相关文献

参考文献7

二级参考文献96

  • 1吴上生,方飞村.机器视觉技术在手机面板质量检测中的应用[J].机械与电子,2005,23(10):51-52. 被引量:1
  • 2SPENCER T, PHILLIPS R, P, SHARP P, F, et al. Au- tomated detection and quantification of microaneurysms in fluorescein angiograms[J]. Graefe's Arch. Clin. Exp. Ophthalmol, 1992, 230:36-41.
  • 3SPENCER T, OLSON J, A, MCHARDY K, C, et al. An image-processing strategy for the segmentation and quantification in fluorescein angiograms of the ocular fun- dus[J]. Comput. Biomed. Res., 1996, 29:284-302.
  • 4Cree M, J, OLSON J, A, MCHARDY K, C, et al. A fully automated comparative MS digital detection sys-tern[J]. Eye, 1997, 11:622-628.
  • 5Frame A. J. , Undrill P. E. , Cree M. J. , et al. A com- parison of computer based classification methods applied to the detection of microaneurysms in ophthalmic fluores- cein angiograms[J]. Comput. Biol. Med., 1998, 28 : 225-238.
  • 6NIEMEIJER M, VAN GINNEKEN B , STAAL J, et al. Automatic detection of red lesions in digital color fundus photographs[ J]. IEEE Trans. Med. Imag. , 2005, 24 (5) :584-592.
  • 7ZHANG B, WU X,YOU J, et al. Detection of microan- eurysms using multi-scale correlation coefficients [ J ]. Pattern Recognization, 2010, 43 (6) : 2237-2248.
  • 8MIZUTANI A, MURAMATSU C, HATANAKA Y, et al. Automated microaneurysm detection method based on double ring filter in retinal fundus images [ J ]. SPIE Medical Imaging 2009: Computer-Aided Diagnosis, 2009, 7260(1) : 72601N.
  • 9张铮,王艳平,薛桂香.数字图像处理与机器视觉-VisualC++与MATLAH实现[M].北京:人民邮电出版社,2012:114-116.
  • 10KELLY R,CARELLI R,NASISI O,et al.Stable visual servoing of camera-in-hand robotic systems[J].Mechatronics,IEEE/ASME Transactions on,2000,5(1):39-48.

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部