期刊文献+

集中力作用下可伸长悬臂梁的大挠度分析

Large Deflection Analysis of a Cantilever with Extensible Axis Under the Action of a Concentrated Force
下载PDF
导出
摘要 悬臂梁模型在诸多工程领域有广泛应用,例如土木工程、机械工程、海洋结构物、航空航天、传感装置等,而其几何非线性和伸长(缩短)量对于其力学行为有重要影响.本文对轴线可伸长的悬臂梁在集中力作用下产生的大变形现象进行了全面研究.首先定义了轴线伸长量,然后将其引入到应变能中,建立了系统的能量泛函;再对泛函进行变分,推导出控制方程组和边界条件;最后采用打靶法求解非线性方程组,得到了悬臂梁的挠曲线、转角和伸长量,并与小变形模型和轴线不可伸长的大变形模型进行了对比.这些分析结果有助于深刻理解结构的非线性变形,同时为精确设计变形较大的工程结构物提供了理论参考. The cantilever model holds great implications in such areas as civil engineering,mechanical engineering,marine structures,aerospace and aeronautics and sensor devices,and its geometric nonlinearity and extensible or compressive value have a great impact on the mechanical behaviors.In the present work,a comprehensive study was carried out on the large deformation of the cantilever with its axis being stretchable under the action of a concentrated force.Firstly,the extensible ratio of the axis was defined,and then it was introduced into the strain energy,thus the energy functional of the system was established.Taking variation on the energy functional,the governing equation group and boundary conditions were derived.Then the shooting method was used to solve this nonlinear equation group,and the deflection,rotation and elongation value of the cantilever were obtained.These results have been compared with those from the infinitesimal deformation model,and large deformation model with the axis being inextensible.These analyses may be beneficial for us to deeply understand the nonlinear deformation of structures,and provide some theoretical references for engineering structures with strong deformation.
作者 龚宇龙 刘建林 GONG Yulong;LIU Jianlin(School of Pipeline and Civil Engineering,China University of Petroleum,Qingdao 266580,China)
出处 《鲁东大学学报(自然科学版)》 2018年第4期373-377,共5页 Journal of Ludong University:Natural Science Edition
基金 国家自然科学基金(11672335) 中央高校基本科研专项资金(15CX08004A)
关键词 可伸长梁 能量泛函 控制方程 几何非线性 大挠度 extensible beam energy functional governing equation geometric nonlinearity large deflection
  • 相关文献

参考文献6

二级参考文献81

  • 1刘延柱.超大变形弹性细杆几何形态的拓扑描述[J].力学与实践,2004,26(5):68-70. 被引量:8
  • 2武际可 黄永刚.弹性曲杆的稳定性问题[J].力学学报,1987,19(5).
  • 3Manning RS, Hoffman KA. Stability of n-covered circles for an elastic rod with planar intrinsic curvature. Journal of Elasticity, 2001, 62(1): 1-23.
  • 4Shi Y, Hearst JE. The Kirchhoff elastic rod, the nonlinear Schroedinger equation, and DNA supercoiling. J Chem Physics, 1994, 101:5186-5200.
  • 5Westcott TP, Tobias I, Olson WK. Elasticity theory and numerical analysis of DNA supercoiling: An application to DNA looping. J Phys Chemistry, 1995, 99:17926-17935.
  • 6Starostin EL. Three-dimensional shapes of looped DNA. Meccanica, 1996, 31:235-271.
  • 7Mesirov JP, Schulten K, Sumners DW. Mathematical Approaches to Biomolecular Structure and Dynamics. New York: Springer, 1996.
  • 8Westcott TP, Tobias I, Olson WK. Modeling self-contact forces in the elastic theory of DNA supercoiling. J Chem Physics, 1997, 107(10): 3967-3980.
  • 9Nizzete M, Goriely A. Towards a classification of Euler-Kirchhoff filaments. J Math Physics, 1999, 40(6):2830-2837.
  • 10Marsden JE. Introducton to Mechanics and Symmetries. New York: Springer, 1994. 287.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部