期刊文献+

DBN网络在语音质量评估中的应用

Application of DBN Network in speech quality evaluation
下载PDF
导出
摘要 针对传统的语音质量评估中主观MOS分与失真测度拟合形式过于简单,无法表现语音质量与失真距离之间复杂的听觉关系这一缺点,提出了一种基于深度置信网络的语音质量评估方法。该方法首先对语音样本进行预处理,之后提取Mel特征参数,利用深度置信网学习特征参数失真测度与主观MOS分之间的关系,从而完成语音质量的评估。实验结果表明,基于该算法的语音质量评估效果好于传统的评估算法与基于BP网络的评估算法。 In view of the shortcoming of the complex auditory relationship between the subjective MOS and the distortion measure in the traditional speech quality evaluation, a method of speech quality evaluation based on depth confidence net- work is proposed. Firstly, the speech sample is preproeessed, the mel feature parameter is extracted, and the relationship between the characteristic parameter distortion measure and the subjective MoS is studied by using the depth confidence net, thus the evaluation of speech quality is completed. The experimental results show-that the proposed algorithm is better than the traditional evaluation algorithm and the evaluation algorithm based on BP network.
作者 宣章健 蔡晓霞 XUAN Zhangjian;CAI Xiaoxia(Electronic Countermeasures College,National University of Defense Technology,Changsha 410005,China)
出处 《电声技术》 2018年第7期43-47,共5页 Audio Engineering
关键词 语音质量评估 基于输入-输出 Mel倒谱 深度置信网 受限玻尔兹曼机 主客观拟台 Speech quality evaluation based on input- output Mel Cepstrum deep belief network limited Boltzmann machine subjective and objective fit
  • 相关文献

参考文献2

二级参考文献21

  • 1PAUl. M. MAGAI.Y K. Computer Processing of remotely-sensed images: an introduction [M]. New York. John Wiley g>. Sons, 2011. 229-285.
  • 2YU D, DENG I. Deep learning and its applicationsto signal and infomaation processing[J]. IEEE Signal Processing Magazine, 2011, 28(1): 145-154.
  • 3BENGIO Y, COURVllA.E A, VINCENT P. Representation learning: a review and new perspectives. [J]. IEEE Transactions on Pattern Analysis . Machine Intelligence. 2013, 35 ( 8): 1798-1828.
  • 4CHO K H, II.IN A, RAIKO T. Improved learning of gaussian-bernoulli restricted Boltzmann machines[J]. Lecture Notes in Computer Science. 2011, 6791. 10-17.
  • 5YU D, DENG L. Deep learning and its applications to signal and information processing[J]. IEEE Signal Processing Magazine, 2011, 28(1) : 145-154.
  • 6MOLLER S,CHAN W Y,CTE N, et al. Speech quality esti- mation: Models and trends[J]. IEEE Transactions on signal processing magazine, , 2011, 28(6): 18-28.
  • 7MOLLER S, HEUSDENS R. Objective estimation of speech quality {or communication systems[J]. Proceedings of the {EEE, 2013, 101(9): 1955-1967.
  • 8XU H,LIN L,SUN X, et al. A new algorithm for auditory feature extraction [ C]. IEEE International Conference on Commmunieation Systems and Network Technologies, 2012 :229-232.
  • 9ITUT Rec. P. Sup23. ITU-T Coded-Speech Database[S]. International Telecommunication Union, Geneva, Switzer- land, 1998.
  • 10ITU-T R P. 862. Perceptual evaluation of speech quality (PESQ): an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs[S]. International Telecommunication Union, 2001.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部