摘要
在分析颜色和纹理特征的基础上,提出了一种融合颜色特征LUV和纹理特征完全局部二值模式(CLBP)的行人检测算法,提取目标信息更加全面准确。采用交叉核SVM分类器对特征进行训练、检测,进一步提高算法的检测性能。实验结果表明,所提出的算法具有更高的检测准确性。
Based on the analysis of color and texture features,proposed a pedestrian detection algorithm that combines color feature LUV and texture feature completed local binary pattern(CLBP).By fusing the two features,the extraction of target information is more comprehensive and accurate.The intersection-kernel SVM classifier is used to train features and detect them,which can further improve the detection performance of the algorithm.Experimental results show that the proposed algorithm has higher detection accuracy.
作者
程德强
冯晨晨
唐世轩
游大磊
CHENG De-qiang;FENG Chen-chen;TANG Shi-xuan;YOU Da-lei(School of Information and Control Engineering,China University of Mining and Technology,Xuzhou 221116,China)
出处
《煤炭技术》
CAS
2018年第10期254-257,共4页
Coal Technology
基金
国家自然科学基金项目(51774281)
徐州市科技创新重点研发项目(KC16GZ013)