摘要
考虑一个系统,由于遭受冲击而引起失效,而且这个系统的寿命依赖于遭受的连续的有效冲击数,且系统承受的连续的有效冲击数是有限的.提出了一个连续的k-out-of—n冲击系统,当且仅当有连续的k次有效冲击发生会直接导致系统失效.利用马尔科夫嵌入法得到系统的寿命分布.最后,用一个数值算例来描述文章所获得的结果.
We consider a system subjected to shock. The shock can induce the device failure. The lifetime of the system depends on the number of consecutive effective shocks. The number of consecutive effective socks that the system can support is limited. In this paper, we present a consecutive k - out - of - n : shocks system, which express that the system fails if and only if ktimes consecutive effective shocks occur in ntimes shocks. As an excellent finite Markov chain embedding (FMCE) approach, it is used to evaluate the probability that the system fails at arrival of the mthshock. For this model, the survival probability is calculated. A numerical example is given to illustrate the results obtained in the paper.
作者
张权
李艳君
王希彬
ZHANG Quan;LI Yan-jun;WANG Xi-bin(Science College of Qiqihaer University,Qiqihaer 161006,China;Qiqihaer Ethnic Korean High School,Qiqihaer 161006,China)
出处
《数学的实践与认识》
北大核心
2018年第19期194-198,共5页
Mathematics in Practice and Theory
基金
“十二五”国家科技支撑计划项目(2013BAK12B0803)
黑龙江省教育厅项目(135109233)
齐齐哈尔大学教研项目(2016016)