期刊文献+

带有媒体报道的禽流感(H7N9)传播影响的研究 被引量:1

Research of the Impact of Media Coverage on the Avian Influenza(H7N9) Transmission
原文传递
导出
摘要 建立了受媒体报道影响的禽流感(H7N9)传播动力学模型,研究媒体报道对H7N9型禽流感传染病传播的影响,并得到了模型的基本再生数.再利用V函数、Dulac函数及极限方程理论等方法对此模型进行了稳定性分析.证明了当基本再生数不大于1时,无病平衡点全局渐近稳定;当基本再生数大于1时,地方病平衡点全局渐近稳定,发现可以通过媒体报道来控制H7N9禽流感的规模. A dynamics model of the avian influenza(H7N9) transmission with media coverage is established in the article to investigate the impact of media coverage on the spread of infectious diseases, and the basic reproduction number of model is obtained. Then, the stability of the model has been analyzed by using V function, Dulac function and the limit equation theory. We prove that the disease free equilibrium is globally asymptotically stable if basic reproduction number R0 is not larger than 1; the epidemic equilibrium is globally asymptotically stable if basic reproduction number R0 is larger than 1. In addition, the results imply that media coverage have a great influence to control the infectious diseases.
作者 陈瑶 孙法国 王震 惠小健 CHEN Yao;SUN Fa-guo;WANG Zhen;XI Xiao-jian(School of Science,Xijing University,Xi'an 710123,China;College of Science,Xi'an Polytechnic University,Xi'an 710048,China)
出处 《数学的实践与认识》 北大核心 2018年第19期318-322,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(11726624) 陕西省自然科学基础研究计划项目资助(2013JM1002)
关键词 V函数 DULAC函数 全局稳定性 禽流感模型 V function Dulac function globally stability avian influenza model
  • 相关文献

参考文献6

二级参考文献51

  • 1高彦生,王冲.2006年全球禽流感流行形势分析[J].检验检疫科学,2006,16(2):3-8. 被引量:13
  • 2Iwami S, Takeuchi Y, Korobeinikov A, Liu X. Prevention of avian influenza epidemic: What policy should we choose[J]. Journal of Theoretical biology, 2008, (252): 732-741.
  • 3Iwami S, Takeuchi Y, Liu X. Avian-human influenza epidemic model[J]. Mathematical Biosciences, 2007, (207): 1-25.
  • 4Rao D M, Chernyakhovsky A, Rao V. Modelling and analysis global epidemiology of avian in- fluenza[J]. Environmental Modelling and Software, 2009, (24): 124-134.
  • 5Wang W, Backward bifurcation of an epidemic model treatment[J]. Mathematical Biosciences, 2006, (201): 58-71.
  • 6Zhang X, Liu X. Backward bifurcation of an epidemic model with saturated treatment function[J]. Journal of Mathematical Analysis and Applications, 2008, (348): 433-443.
  • 7Capasso V, Serio G. A generalization of the Kermack-Mckendrick deterministic epidemic model[J]. Mathematical Biosciences, 1978, (42): 43-61.
  • 8Wang K, Wang W, Liu X. Viral infection model with periodic lytic immune response[J]. Chaos Solitons and Fractals, 2006, (28): 90-99.
  • 9Liu Y, Cui J. The impact of media convergence on the dynamics of infectious diseases[J]. Interna- tional Journal of Biomathematics, 2008(1): 65-74.
  • 10Cui J, Tao X, Zhu H. An SIS infection model incorporating media convergence [J]. The Rocky Mountain Journal of Mathematics, 2008(38): 1323-1334.

共引文献70

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部