期刊文献+

胶体光子晶体带隙研究 被引量:1

Study of Photonic Band-Gap of Colloidal Photonic Crystals
下载PDF
导出
摘要 以220 nm单分散聚苯乙烯微球悬浮液为原料,通过透析自组装、自然干燥制备胶体光子晶体。分别利用扫描电子显微镜和光纤光谱仪表征该晶体薄膜的微结构和光学特性。考察了光纤探头检测角度及溶剂渗透对样品衍射峰的影响。结果表明:所制备的胶体光子晶体具有良好的长程有序性,其衍射峰位置与光纤探头检测角度有关。研究还发现,通过有机溶剂二甲基硅油渗透晶体空隙可以改变光子晶体带隙位置和衍射强度,并通过有效填充率计算修正,验证了光子晶体带隙改变服从布拉格定律。 A colloidal photonic crystal was prepared by self-assembly and evaporation of 220 nm monodisperse PS latex. The microstructures and optical properties of colloidal photonic crystal were characterized by scanning electron microscope and fiber optic spectrometer, respectively. The influence of the Angle of the fiber probe and solvent penetration on the diffraction peak of the sample was investigated. The results showed that the colloidal photonic crystal has long-term ordered structure and whose diffraction peak has angle-dependent properties. The photonic band-gap of the colloidal photonic crystal could be shifted by infiltrate organic solvent, i.e.dimethyl silicone oil, into the vacancy of the crystal, which obeys the Bragg's law by calculating the packing rate of the PS colloids.
作者 仇艳菲 董志强 陈诚 朱志刚 QIU Yanfei;DONG Zhiqiang;CHEN Cheng;ZHU Zhigang(School of Environmental and Materials Engineering,Shanghai Polytechnic University,Shanghai 201209,China)
出处 《上海第二工业大学学报》 2018年第3期192-196,共5页 Journal of Shanghai Polytechnic University
基金 国家自然科学基金(61471233 21504051) 上海市教委曙光计划(14SG52) 上海高校特聘教授(东方学者)计划 上海第二工业大学研究生项目基金(EGD17YJ003)资助
关键词 光子晶体 胶体晶体 反射光谱 折射率 布拉格定律 photonic crystal colloidal crystal reflection spectra refractive index Bragg's law
  • 相关文献

参考文献5

二级参考文献29

  • 1许振丰,苏萍,曹良才,何庆声,金国藩.具有双光栅结构的高提取效率发光二极管的设计[J].红外与激光工程,2007,36(5):715-717. 被引量:6
  • 2Yablonovitch, E. Inhibited spontaneous emission in solid- state physics and electronics [ J 1. Physical Review Let- ters, 1987,58 (20) :2059 - 2062.
  • 3John, S. Strong iocalization of photons in certain disorder- ed dielectric superlattices [ J ]. Physical Review Letters, 1987,58 (23) :2486 - 2489.
  • 4Yablonovitch,E Gmitter,T J, et al. Photonic band structure : the face-centered-cubic case employing nonspherical atoms [ J ]. Physical Review Letters, 1991,67 ( 17 ) :2295 - 2299.
  • 5Sun H B, Matsuo S, Misawa H. Three-dimensional photon- ic crystal structures achieved with two-photon-absorption photopolymerization of resin [ J ]. Applied Physics Letters, 1999,74 (6) :786 - 788.
  • 6Kopnov F, Lirtsman V, Davidov D. Self-assembled colloi- dal photonic crystals [ J ]. Synthetic Metals, 2003,137 : 993 - 995.
  • 7FITCH R M. The science of polymer colloids: the state of the art [J]. Macromolecular Symposia, 1995, 92(1): 1-11.
  • 8DICKINSON E, PARKER R. Polydispersity and the col- loidal order-disorder transition [J]. Chemical Physics Let- ters, 1981, 79(3): 578-582.
  • 9ZOU H, WU S S, SHEN J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications [J]. Chemical Reviews, 2008, 108(9): 3893-3957.
  • 10REESE C E, GUERRERO C D, WEISSMAN J M, et al. Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals [J]. Journal of Colloid and Interface Science, 2000, 232(1): 76-80.

共引文献22

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部