期刊文献+

风电机组叶片开裂缺陷在线监测终端研制 被引量:4

Development of an Online Monitoring Terminal for Crack Defect of Wind Turbine Blades
下载PDF
导出
摘要 针对传统的风机叶片开裂缺陷检测方法无法实现风机叶片的非接触实时监测等问题,在分析风力发电机叶片开裂气动噪声信号特征的基础上,设计了一种风电机组叶片开裂缺陷智能终端,研制的智能终端包括信号传感、信号处理与传输和无线通信三个部分。测试结果表明,研制的智能终端能够实时获取风机叶片运行气动噪声和初步诊断,为风机叶片开裂缺陷的及时诊断提供了有效的检测工具。 Considering that traditional methods for detecting crack defects of wind turbine blades cannot realize non-contact real-time monitoring of blades,on the basis of an analysis of the characteristics of aerodynamic noise signal of wind turbine blade cracks,this paper introduced the design of an intelligent terminal for wind turbine blade cracks. The developed intelligent terminal included three parts:signal sensing,signal processing and transmitting,and wireless communication. Test results indicated that the developed intelligent terminal could obtain aerodynamic noise of blade operation and make an initial diagnosis on the real-time basis,thus providing an effective detection tool for timely diagnosis of cracks of wind turbine blades.
作者 颜京忠 王磊 周进 季翠娜 王德刚 Yuan Jingzhong;Wang Lei;Zhou Jin;Ji Cuina;Wang Degang(State Grid Penglai Power Supply Co.,Penglai Shandong 265699,China)
出处 《电气自动化》 2018年第5期116-118,共3页 Electrical Automation
关键词 风机叶片 开裂缺陷 气动噪声 在线监测 智能终端 wind turbine blade crack defect aerodynamic noise online monitoring intelligent terminal
  • 相关文献

参考文献1

二级参考文献19

  • 1张广平.循环加载下金属薄膜的裂纹萌生行为及其微观机制的研究[J].机械强度,2004,26(z1):5-7. 被引量:7
  • 2朱忠奎,陈再良,王传洋.基于小波尺度图重分配的轴承瞬态特征检测与提取[J].数据采集与处理,2005,20(3):356-360. 被引量:8
  • 3Kirikera G R, Schulz M J, Sundaresan M J. Multiple damage identification on a wind turbine blade using a structural neural system[J]. Proceedings of the SPIE-The International Society for Optical Engineering , 2007(6530): 65300T-1-12.
  • 4Marin J C, Barroso A, Paris F, et al. Study of fatigue damage in wind turbine blades[J]. Engineering Failure Analysis, 2009, 16(2): 656-668.
  • 5Anastassopoulos A A, Kouroussis D A, Nikolaidis V N. Structural integrity evaluation of wind turbine blades using pattem recognition analysis on acoustic emission data[C]//The 25th European Conference on Acoustic Emission Testing(EWGAE), Prague, Czech Reptember, 2002.
  • 6Dtmegan H L. Detection of fatigue crack growth by acoustic emission techniques[J]. Materials Evaluation, 1970, 28(10): 221-223.
  • 7Ziola S. Digital signal processing of modal emission signals[J]. Journal of Acoustic Emission, 1996, 14(3/4): 12-18.
  • 8Lekou D, Vionis P, Joosse P A, et al. Full-scale blade testing enhanced by acoustic emission monitoring[C]// Proceeding of European Wind Energy Conference, Madrid, Spain, 2003.
  • 9Paquette J, Van Dam J, Hughes S. Structural testing of 9m carbon fiber wind turbine research blades[C]//AIAA 2007 Wind Energy Symposium, Reno, USA, 2007.
  • 10Tavner P J. Review of condition monitoring of rotating electrical machines[J]. IET Electric Power Applica-tions, 2008, 2(4): 215-247.

共引文献27

同被引文献15

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部