期刊文献+

空间天线板地面重力补偿系统仿真研究 被引量:1

Research on Gravity Compensation System Simulation of the Space Antenna Plate
下载PDF
导出
摘要 针对某型号空间天线板的结构特点,制定吊挂方式重力补偿方案,实现空间天线板地面展开试验的重力补偿。建立空间天线板仿真模型,应用ADAMS软件对重力补偿方案进行动力学仿真分析,分析铰链配重、滑轮组和滑车摩擦力以及天线板组件厚度方向上的质心偏差对展开性能的影响。研究结果表明,利用该配平方案对各组件进行配平,尽可能减小试验系统的摩擦力,保证天线板组件厚度方向质心偏差≤4mm,可确保电动机具备足够的输出力矩裕度,实现空间天线板的顺利展开与锁定。 For the stucture characteristics of a certain type of space antenna board,the gravity compensation plan for hanging pattern is made to realize the gravity compensation of space antenna board for ground expansion test.The space antenna plate simulation model is established,using the ADAMS dynamics simulation analysis on gravity compensation system.The influence of hinge counterweight,pulley block and block friction and the position deviation of the center on the performance of the antenna plate component thickness is analyzed.Research results show that,according to balancing scheme in this paper the components are balanced,to minimize the friction of the test system and ensure that the position deviation of the center of the antenna plate component thickness is not more than 4 mm.Thus,it can ensure the motor with sufficient output torque margin and make the space antenna board expanded and locked smoothly.
作者 何鹏鹏 刘博 韩建超 鲁利刚 赵琳娜 于震 HE Pengpeng;LIU Bo;HAN Jianchao;LU Ligang;ZHAO Linna;YU Zhen(Beijing Spacecrafts,Beijing 100094,China)
机构地区 北京卫星制造厂
出处 《新技术新工艺》 2018年第6期24-29,共6页 New Technology & New Process
基金 国防基础科研(JCKY2016203B081)
关键词 空间天线板 重力补偿 动力学 仿真研究 space antenna plate gravity compensation dynamics simulation research
  • 相关文献

参考文献4

二级参考文献24

  • 1WHITE G C, XU Y. An active vertical-direction gravity compensation system[J]. IEEE Transactions on Instrumentation and Measurment, 1994,43 (6) : 12.
  • 2SATO Y, EJIRI A, IIDA Y, et al. Micro-G emulation system using constant-tension suspension for a space manipulator[C]//Proceedings of the 1991 IEEE International Conference on Robotics and Automation Sacramento. California: [ s. n. ], 1991.
  • 3Hirzinger G, Brunner B, Dietrich J, et al. ROTEX - The first re- motely controlled robot in space[C]//IEEE International Confer- ence on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1994: 2604-2611.
  • 4Russakow J, Rock S M, Khatib O. An operational space formu- lation for a free-flying, multi-arm space robot[C]//4th Interna- tional Symposium on Experimental Robotics. Berlin, Germany: Springer-Verlag, 1997: 448-457.
  • 5Gefke G G, Carignan C R, Roberts B J, et al. Ranger teler- obotic shuttle experiment: Status report[C]//Proceedings of SPIE: vol.4570. Bellingham, WA, USA: SPIE, 2001: 123-132.
  • 6Nechyba M C, Xu Y S. Human-robot cooperation in space: SM2 for new space station structure[J]. IEEE Robotics & Automation Magazine, 1995, 2(4): 4-11.
  • 7van Dorsser W D, Barents R, Wisse B M, et al. Gravity-balanced ann support with energy-free adjustment[J]. Journal of Medical Devices, 2007, 1(2): 151-158.
  • 8Lu Q, Ortega C, Ma O. Passive gravity compensation mecha- nisms: Technologies and applications[J]. Recent Patents on En- gineering, 2011, 5(1): 32-44.
  • 9Ulrich N, Kumar V. Passive mechanical gravity compensation for robot manipulators[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1991: 1536-1541.
  • 10Banala S K, Agrawal S K, Fattah A, et al. Gravity-balancing leg orthosis and its performance evaluation[J]. IEEE Transactions on Robotics, 2006, 22(6): 1228-1239.

共引文献17

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部