期刊文献+

铣刀在铣削加工中破损特征的识别方法研究 被引量:2

Identification Method for Milling Cutter Breakage Features in Milling Process
下载PDF
导出
摘要 通过电流传感器分别测量驱动正常铣刀以及发生破损铣刀旋转的主轴电机电流,将其作为原始采集信号,并对该信号进行消噪处理。其次,利用消噪后的电流信号数据,以MATLAB分析时域均方根和信号功率谱密度随频率的分布情况,从而提取刀具破损特征。最后,针对提取到的样本特征,应用最小二乘支持向量分类机模型进行刀具破损模式识别,实验结果表明,通过小波消噪、burg功率谱特征提取和应用最小二乘支持向量分类机判断,刀具破损状态的识别准确率可达95%。 The current of spindle motor respectively with normal tool and broken tool is measured by an electric current transducer, which is taken as original signal, and de-noised. Then the current signal data after de-noising is used in MATLAB to analyze the distribution of root mean square in time domain and signal power spectral in frequency domain, so as to obtain tool breakage features. Through the extracted sample characteristics, the model of the tool breakage pattern is identified by the least squares support vector classifier model. The experimental results show that, after wavelet noise reduction, burg power spectral extraction and the least squares support vector classifier, the accuracy rate reaches 95%.
作者 王欣 强云玥 Wang Xin;Qiang Yunyue(School of Mechanical Engineering,Shanghai University for Science and Technology,Shanghai 200093,China)
出处 《农业装备与车辆工程》 2018年第10期65-70,共6页 Agricultural Equipment & Vehicle Engineering
关键词 刀具破损 电流测量 特征提取 小波消噪 最小二乘支持向量机 tool breakage electric current measurement feature extraction wavelet noise reduction the least squares support vector classifier
  • 相关文献

参考文献5

二级参考文献33

  • 1李振加,顾祖慰.铣削过程刀具破损原因的探讨[J].机械工程学报,1993,29(4):93-96. 被引量:22
  • 2金成哲,贾春德.基于车铣技术的刀具磨损和破损分析[J].中国机械工程,2006,17(14):1456-1459. 被引量:10
  • 3楼顺天,施阳.基于MATLAB的系统分析与设计神经网络[M].西安:西安电子科技大学出版社,1999.
  • 4梅宏斌 阎明印.微机数据采集与处理[J].陕西电子,1994,.
  • 5Noori-Khajavi A,Komanduri R.Frequency and Time Domain Analysis of Sensor Signals inDrillingI.Correlation With Drill Wear[J].International Journal of Machine ToolsManufact.1995,35(6):777-793.
  • 6Noor-Khajavi A,Komanduri R.Frequency and Time Domain analysis of Sensor Signals inDrilling-Ⅱ.Investigation on Some Problems Associated With SensorIntegration[J].International Journal of Machine Tools Manufact,1995,35(6):795-815.
  • 7Choudhury S K,Jain V K,Rama Rao C V V.On-lineMonitoring of Tool Wear in Turning Using a Neural Network[J].International Journal ofMachine Tools & Manufacture.1999,39:489-504.
  • 8Silva R G,Reuben R L,Baker K J.Tool Wear Monitoring of Turning Opera tions ByneuralNetwork and Expert System Classifcation of a Feature Set Cenerated From MultipleSensors[J].Mechanical Systems and Signal Processing,1998,12(2):319-333.
  • 9Bayyoumi A E,Yucesan G.,Kendall L A.An Analytic Mechanistic Cutting Force Model for Milling Operations:a Theory and Methodology.ASME Transactions[J].Journal of Engineering for Industry,1994,116(8):324-330.
  • 10Bayyoumi A E,Yucesan G.,Kendall L A.An Analytic Mechanistic Cutting Force Model for Milling Operations:a Case Study of Helical Milling Operation.ASME Transactions[J].Journal of Engineering for Industry,1994,116(8):331-339.

共引文献17

同被引文献71

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部