期刊文献+

Spark框架下矢量多边形求交算法研究 被引量:7

Research on vector polygon intersection algorithm in Spark framework
下载PDF
导出
摘要 提出一种分布式内存计算框架Spark下的矢量多边形求交算法,解决了大数据环境下并行矢量多边形求交计算过程中网络数据传输成本高、冗余计算量大的问题。该算法根据空间填充曲线构建空间网格分区,并利用多边形最小外包矩形(MBR)进行网格填充,以传输MBR代替传统算法中直接传输多边形几何体的过程,减少了算法的网络数据传输量。针对复杂多边形跨越多个网格分区的场景,提出一种跨区数据交点定位策略,从而消除跨区多边形的冗余计算。实验结果表明,本文方法能够显著提高并行矢量多边形求交算法的计算效率。 A vector polygon intersection algorithm in Spark framework is proposed,which is a distributed memory computing framework. It solves the problems of current parallel polygon intersection algorithm,such as high cost of network data transmission and redundant computation. Firstly,a spatial grid partitioning strategy based on space filling curves and a grid filling method with polygon's minimum bounding rectangle( MBR) are introduced to reduce the network data transmission by transmitting MBR instead of polygon. Secondly,during the phase of data distribution,aiming at the scenario of complicated polygon which cross several grids,a polygon intersection location approach is adopted to eliminate the redundant computation of cross-district polygon. The results of the comprehensive experiments show that the proposed method can significantly improve the efficiency of the vector polygon intersection algorithm.
作者 姚晓 邱强 肖茁建 方金云 崔绍龙 Yao Xiao;Qiu Qiang;Xiao Zhuojian;Fang Jinyun;Cui Shaolong(Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190;University of Chinese Academy of Sciences,Beijing 10019;Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences,Beijing 10009)
出处 《高技术通讯》 EI CAS 北大核心 2018年第6期500-507,共8页 Chinese High Technology Letters
基金 国家重点研发计划(2016YFB0502300 2016YFB0502302) 国家自然科学基金(NO.41471430)资助项目
关键词 SPARK 多边形求交 最小外包矩形(MBR) 交点定位 Spark polygon intersection minimum bounding rectangle (MBR) intersection location
  • 相关文献

参考文献4

二级参考文献41

  • 1董鹏,李津平,白予琦,钱贞国,杨崇俊.基于改进四叉树索引的矢量地图叠加分析算法[J].计算机辅助设计与图形学学报,2004,16(4):530-534. 被引量:17
  • 2周成虎.全空间地理信息系统展望[J].地理科学进展,2015,34(2):129-131. 被引量:163
  • 3易法令,严圣华.GIS空间数据格式并行转换的调度算法[J].计算机工程,2004,30(23):47-49. 被引量:3
  • 4Coleman D, Georgiadou Y, Labonte J. Volunteered geo- graphic information:The nature and motivation of produs- ers. International Journal of Spatial Data Infrastructures Research,2009,4:332-358.
  • 5Sarwat M, Bao J, Eldawy A, et al. Sindbad- a location- based social networking system. In:Proceedings of ACM International Conference on Management of Data, SIG-MOD' 12, Scottsdale, Arizona, USA ,2012. 649-652.
  • 6Apache Hadoop. http ://hadoop. apache, org/.
  • 7I Gtiting R. H. An introduction to spatial database systems. The VLDB Journal, 1994,3 (4) : 357-399.
  • 8Shvachko K, Kuang H, Radia S, et al. The Hadoop Distribu- ted File System. In:Proceedings of the 26th Symposium on Mass Storage Systems and Technologies, MSST' 10, 2010.1-10.
  • 9Condie T, Conway N, Alvaro P, et al. MapReduce Online. In:Proceedings of the 7th USENIX Conference on Net- worked Systems Design and Implementation, NSDI' 10, San Jose, CA, USA ,2010.21-36.
  • 10Azza A, Kamil B, Daniel A, et al. HadoopDB : an architec- tural hybrid of MapReduce and DBMS technologies for analytical workloads. The VLDB Journal, 2009,2 ( 1 ) : 922-933.

共引文献33

同被引文献74

引证文献7

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部