期刊文献+

铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射 被引量:6

Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures
下载PDF
导出
摘要 利用飞秒激光脉冲在生长于二氧化硅衬底上的W/CoFeB/Pt和Ta/CoFeB/Pt两类铁磁/非磁性金属异质结构中实现高效、宽带的相干THz脉冲辐射.实验中, THz脉冲的相位随外加磁场的反转而反转,表明THz辐射与样品的磁有序密切相关.为了考察三层膜结构THz辐射的物理机制,分别研究了构成三层膜结构的双层异质结构(包括CoFeB/W, CoFeB/Pt和CoFeB/Ta)的THz辐射.实验结果都与逆自旋霍尔效应相符合, W/CoFeB/Pt和Ta/CoFeB/Pt三层膜结构所辐射的THz强度优于同等激发功率下的ZnTe (厚度0.5 mm)晶体.此外,还研究了两款异质结构和ZnTe的THz辐射强度与激发光脉冲能量密度的关系,发现Ta/CoFeB/Pt的饱和能量密度略大于W/CoFeB/Pt的饱和能量密度,表明自旋电子在Ta/CoFeB/Pt中的界面积累效应相对较小. The development of efficient terahertz(THz) radiation sources is driven by the scientific and technological applications. To date, as far as the radiation of THz pulses is concerned, the widely used methods are biased semiconductor,electro-optical crystal and air plasma, which are excited separately by femtosecond laser pulses. The mechanisms involved in these THz sources are photo-carrier acceleration, second order nonlinear effect, and plasma oscillations, respectively. Here, we report the generation of coherent THz radiation in the designed ferromagnetic/non-magnetic metallic W/CoFeB/Pt and Ta/CoFeB/Pt trilayers on SiO2 substrates, excited separately by ultrafast laser pulses. The transient THz electric field is fully inverted when the magnetization is reversed, which indicates a strong connection between THz radiation and spin order of the sample. We present the THz radiation results of the bilayers, CoFeB/W, CoFeB/Pt and CoFeB/Ta, which are comprised of the trilayer heterostructures used in our experiments. We find that all experimental results are in good agreement with the results from the inversed spin-Hall effect(ISHE) mechanism. Owing to the ISHE,the transient spin current converts into a transient transverse charge current, which launches the THz electromagnetic wave. In our experiments, W or Ta has an opposite spin Hall angle to Pt. Therefore, the amplitude of the THz emission can be increased by a constructive superposition of two charge currents in metallic layers. Our results indicate that the peak-values of the THz radiation covering the 0–2.5 THz range from W/CoFeB/Pt and Ta/CoFeB/Pt are stronger than that from 0.5 mm thick ZnTe(110) crystal, under very similar excitation conditions. Finally, we investigate the dependence of peak-to-peak values for two different heterostructures on the pump fluence. The saturations of THz pulse at pump fluences of ~0.47 m J/cm^2 and ~0.61 mJ/cm^2 are found for W/CoFeB/Pt and Ta/CoFeB/Pt heterostructures,respectively. The saturation can be generally attributed to the spin accumulation effect and laser-induced thermal effect.Our results indicate that the spin accumulation effect, by which the density of spin-polarized electrons is restricted in a non-magnetic metallic layer, is slightly less pronounced for Ta/CoFeB/Pt system at high fluences. Our findings provide a new pathway for fabricating the spintronic THz emitter, which is comparable to the conventional nonlinear optical crystals.
作者 张顺浓 朱伟骅 李炬赓 金钻明 戴晔 张宗芝 马国宏 姚建铨 Zhang Shun-Nong;Zhu Wei-Hua;Li Ju-Geng;Jin Zuan-Ming;Dai Ye;Zhang Zong-Zhi;Ma Guo-Hong;Yao Jian-Quan(Department of Physics,Shanghai University Shanghai 200444,China;Department of Optical Science and Engineering,Fudan University,Shanghai 200082,China;STU & SIOM Joint Laboratory for Superintense Lasers and the Applications,Shanghai 201210,China;College of Precision Instrument and Optoelectronics Engineering,Tianjin University,Tianjin 300110,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第19期245-252,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:11604202 11674213 61735010 51671057 11774220) 上海高校青年东方学者(批准号:QD2015020) 上海市教育委员会和上海市教育发展基金会"晨光计划"(批准号:16CG45) 上海市青年科技启明星计划(批准号:18QA1401700)资助的课题~~
关键词 太赫兹波 超快光谱 自旋流 逆自旋霍尔效应 THz radiation ultrafast spectroscopy spin current inversed spin-Hall effect
  • 相关文献

参考文献1

二级参考文献26

  • 1Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawa- bata T, Sasaki H, Takeda M W, Hangyo M .2011, Appl. Phys. Lett. 99 161114.
  • 2Krause J, Wagner M, Winnerl S, Helm M, Stehr D .2011, Opt. Express 19 19114.
  • 3Shi W, Hou L, Wang X M .2011, J. Appl. Phys. 110 023111.
  • 4Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritehie D A, Peppe M .2009, Appl. Phys. Lett. 95 051106.
  • 5Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Ed- wards E .2011, J. Appl. Phys. 109 033108.
  • 6Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M .2010, Appl. Phys. Lett. 96 211104.
  • 7Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H .2015, Chin. Phys. B 24 028504.
  • 8Yang Y P, Ranjan S, Zhang W L .2014, Chin. Phys. B 23 128702.
  • 9Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M .2012, Chin. Phys. B 21 108504.
  • 10Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J .1997, IEEE Trans. Plasma Sci. 25 124.

共引文献4

同被引文献32

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部