期刊文献+

一个“奇特”平均推广的Schur幂凸性

The Schur Power Convexity for the Special Mean's Generalization
下载PDF
导出
摘要 将涉及双曲函数及反双曲函数的一个"奇特"平均作参数推广,研究其Schur幂凸性,给出了判定的充要条件.文末提出4个待解决问题. In this paper, we extend a special mean about hyperbolic tunetion and inverse hyperbolic function, and study the Sehur power convexity. We give the neeessacy and sufficent conditions for the judgment. At last , we propose four problems to be solved.
作者 何灯 HE Deng(Number 3 Middle School,Fuqing,Fujian,350315,P.R.China)
机构地区 福清第三中学
出处 《广东第二师范学院学报》 2018年第5期32-38,共7页 Journal of Guangdong University of Education
关键词 SCHUR凸性 Schur幂凸性 双曲函数 反双曲函数 Sehur convexity Sehur power convexity hyperbolic function inverse hyperbolic function
  • 相关文献

参考文献5

二级参考文献30

  • 1张小明,续铁权.广义S-几何凸函数的定义及其应用一则[J].青岛职业技术学院学报,2005,18(4):60-62. 被引量:16
  • 2李大矛,石焕南.一个二元平均值不等式猜想的新证明[J].数学的实践与认识,2006,36(4):278-283. 被引量:5
  • 3李大矛,顾春,石焕南.Heron平均幂型推广的Schur凸性[J].数学的实践与认识,2006,36(9):386-390. 被引量:13
  • 4Albert W. Marshall, Ingrarn Olkin. Inequalities: Theory of Majorization andlts Applications[M]. New York: Academic Press, Inc, 1979.
  • 5Yuming Chu,Yupei Yi. The Schur Harmonic Convexity of the Hamy Symmetric Function and Its Applications[J]. Journal of Inequalities and Applications,Vol.2009(2009), Article ID 838529. http://www.hindawi.com/journals/jia.
  • 6Xiao-ming Zhang. Schur-geometric convexity of a function involving Maclaurin's elementary symmetric mean[J].Journal of Inequalities in Pure and Applied Mathematics, 2007, 8(2).
  • 7Guan Kai-zhong. Some properties of a class of symmetric functions[J]. J. Math. Anal. Appl., 2007, 336:70-80.
  • 8Shi Huan-nan, Jiang Yong-ming and Jiang Wei-dong. Schur-Convexity and Schur-Geometrically Concavity of Gini Mean[J]. Comput.Math. Appl.,2009, 57:266-274.
  • 9YangZhenhang.Schur power convexity of Gini means.不等式研究通讯,2010,:140-160.
  • 10Matkowski J. L^p-Like paranorms, selected topics in functional equations and iteration theory[J]. Proceedings of the Austrian-Polish Seminar, Graz Math Ber, 1992, 316.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部