期刊文献+

拱桥钢箱吊杆驰振稳定性数值计算研究 被引量:5

Numerical Calculation of Galloping Stability of Steel Box Suspender of Arch Bridge
下载PDF
导出
摘要 驰振是细长结构在横风向作用下的一种不稳定的单自由度发散振动现象,会导致结构毁坏,截面形状的微小变化会改变结构驰振稳定性.文中运用两种方法对南京大胜关长江大桥吊杆1/10缩尺模型进行了驰振性能计算,并展示了驰振中的极限环振动现象.吊杆包括长方形截面、切角长方形截面A、切角长方形截面B三种方案.方法一是通过计算流体力学软件FLUENT求出不同风攻角下的阻力系数和升力系数,并根据葛劳渥-登哈托原理判断驰振是否发生;根据相关公式计算驰振临界风速.方法二是对FLUENT进行二次开发,将Newmark方法的代码嵌入用户自定义函数UDF,运用FLUENT动网格技术建立二维流固耦合模型进行驰振仿真计算,求出驰振临界风速以及各风速下的振幅变化规律.仿真计算结果表明,横桥向来风时,长方形截面,切角长方形截面A方案的1/10缩尺模型会发生驰振,切角长方形截面B的1/10缩尺模型不会发生驰振,仿真计算结果与风洞试验结果吻合较好,为工程结构气动力截面选型提供依据. The galloping vibration is an unstable one-degree-of-freedom divergent vibration phenomenon of slender structures under the action of transverse wind direction, which will lead to structural damage and small changes in cross-sectional shape will change the galloping stability of the structures.In this paper, the galloping performance of the 1 / 10 scale model of the suspender of Nanjing Dashengguan Yangtze River Bridge was calculated by two methods for the first time, and the phenomenon of limit cycle vibration in galloping was presented. The design of suspender includes three schemes: rectangular cross section, rectangular cross section A with cut corners, and rectangular cross section B with cut corners. The first method is to calculate the drag coefficient and lift coefficient at different wind angles of attack through the computational fluid dynamics software FLUENT, and the galloping phenomenon is judged according to the principle of Grouw-Denhato, and the galloping critical wind speed is calculated. The second method is to develop FLUENT for the second time and embed the code of Newmark method into user-defined function UDF. The FLUENT dynamic grid technology is used to establish a two-dimensional fluid-solid coupling model for galloping simulation calculation, and the galloping critical wind speed and the amplitude variation law under each wind speed are obtained. The simulation results show that the 1 / 10 scale model of rectangular section and tangent rectangular section A will gallop while the 1 / 10 scale model of tangent rectangular section B will not gallop when the transverse bridge is facing the wind.The simulation results are in good agreement with the wind tunnel test results, providing a basis for aerodynamic section selection of engineering structures.
作者 詹昊 廖海黎 ZHAN Hao;LIAO Haili(School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China;China Railway Major Bridge Reconnaissance & Design Institute Co.Ltd.,Wuhan 430056,China)
出处 《武汉理工大学学报(交通科学与工程版)》 2018年第5期766-771,共6页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家自然科学基金项目(51378442) 国家重点基础研究发展计划项目(2013CB036300)资助
关键词 拱桥钢箱吊杆 驰振临界风速 阻力升力系数 登哈托判据 流固耦合 steel box hanger of arch bridge galloping critical wind speed;Glauert-Den Hartog criterion drag and lift coefficient;fluid-structure interaction
  • 相关文献

参考文献1

二级参考文献5

  • 1中铁大桥勘测设计院.南京大胜关长江大桥初步设计[Z].2005.
  • 2郭向荣,曾庆元.京沪高速铁路南京长江大桥三塔斜拉桥方案动力特性及列车走行分析[R].2001.
  • 3中铁大桥勘测设计院,武汉钢铁公司研究院.高强度结构钢Q420q应用试验研究研究报告[R].2007.
  • 4中南大学.整体桥面结构分析与试验研究研究报告[R].2007.
  • 5刘桂红,易伦雄.采用正交异性钢桥面板的铁路钢桁梁设计[J].桥梁建设,2007,37(A02):8-10. 被引量:19

共引文献53

同被引文献24

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部