期刊文献+

Monaco治疗计划系统中量化并构建电离室有效点计算模型

Quantification and construction of the effective point calculation model of ionization chamber in Monacao treatment planning system
原文传递
导出
摘要 目的蒙卡剂量计算中的统计噪声会影响有效点剂量测量的精度。采用用户定义的球体积替代有效点,围绕有效点进行球体取样可降低随机误差提高剂量统计精度。方法将0.125cm。电离室(IC)放置在圆柱型均匀模体的中心分别在0。和90。进行直接剂量测量。在扫描的cT体模系列中,勾画Ic敏感体积长度,将等中心点定义为模拟有效点。根据测量模式在治疗计划系统中模拟所有射野,采用2 mm体素计算网格间距要求相对标准偏差≤0.5%。在不同的采样球半径(2.5、2.0、1.5、1.0 mm)下对3种不同电子密度(ED)IC模型(模型A食管腔电子密度0.210 g,/cm^3、模型B空气电子密度0.001 g/cm^3和模型C默认cT电子密度)计算值与测量值进行比较,确定MC计算统计不确定度对剂量精度影响。结果在Monaco计划系统中对Ic使用模型A且取样球半径为1.5 mm时,计算统计值与测量值的绝对平均偏差最小为0.49%。当IC使用模型B和模型c时。推荐统计采样球半径为2.5 mm,绝对平均偏差分别为0.61%和0.70%。结论在Monaco治疗计划中,对31010电离室的有效点测量模型推荐使用电子密度为0.210 g/cm^3和取样半径为1.5 mm球体积替代有效点剂量测量以减小蒙卡随机统计误差。 [ Abstract] Objective Because of statistical noise in Monte Carlo dose calculations, the effective point doses may not be accurately calculated. A user-defined sphere volume was adopted to substitute the effective point to take sphere sampling around the effective point, which minimize the random errors and improve the accuracy of statistical dose. Methods Direct dose measurements were performed at 0~ and 90~ using a 0. 125 cm^3 Semiflex ionization chamber (IC) 31010 isocentrically placed in the center of a homogeneous Cylindric sliced RW3 phantom (PTW, Germany). In the scanned CT phantom series, the sensitive volume length of the IC (6. 5 ram) was delineated and the isocenter was defined as the simulated effective point. All beams were simulated in the treatment planning system (TPS) in accordance to the measured model. The grid spacing was calculated by 2 mm voxels and the relative standard deviation should be ~〈 0. 5%. The statistical and measured doses were statistically compared among three IC models with different electron densities ( ED ; esophageal lumen ED = 0. 210 g/cm^3 for model A, air ED = 0. 001 g/cm^3 for model B and the default CT scanned ED for model C) at different sampling sphere radius ( 2. 5,2. 0,1.5 and I. 0 ram) to evaluate the effect of Monte Carlo.calculation uncertainty upon the dose accuracy. Results In the Monaco TPS, the statistical value was in the highest accordance with the measured value with an absolute average deviation of 0. 49% when the IC was set as esophageal lumen ED = 0. 210 g/cm^3 and the sampling sphere radius was 1.5 mm. When the IC was set as air ED=0. 001 g/cm^3 and default CT scanned ED,and, the recommended statistical sampling sphere radius was 2. 5 mm, the absolute average deviations were 0. 61% and O. 70%. Conclusion In the Monaco TPS, the calculation model with an ED of 0. 210 g/cm^3 and a sampling radius of 1.5 mm is recommended for the ionization chamber 31010 to substitute the effective point dose measurement to decrease the random stochastic errors of Monte Carlo.
作者 张若辉 白文文 郜玉兰 苗明昌 王世广 冯远明 迟子锋 Zhang Ruohui;Bai Wenwen;Gao Yulan;Miao Mingchang;Wang Shiguang;Feng Yuanming;Chi Zifeng(Biomedical Engineering Department,School Of Precision Instruments and Opto-Electronics Engineering,Tianjin University,300072,China;Department of Radiation Oneology,Fourth Hospital of Hebei Mediacl University,Shijiazhuang 050011,China;Department of Gastroenterology,Hebei General Hospital,Shijiazhuang 050051,China)
出处 《中华放射肿瘤学杂志》 CSCD 北大核心 2018年第10期916-919,共4页 Chinese Journal of Radiation Oncology
基金 河北省自然科学基金(H2018206135)
关键词 蒙特卡罗 电离室模型 治疗计划系统 球体采样 Monte Carlo Ionization chamber model Treatment planning system Sphere sampling
  • 相关文献

参考文献5

二级参考文献38

  • 1李先明,胡逸民,哈思衡,张红志,张春利,张信,徐国镇.气腔对高能X线剂量分布的影响[J].中华放射肿瘤学杂志,1992(3):52-56. 被引量:8
  • 2任晓娜,夏益华,宋海龙.空腔电离理论发展概述[J].辐射防护通讯,2004,24(3):9-13. 被引量:2
  • 3尹在哲.空腔理论在固体剂量计中的应用[J].原子能科学技术,2006,40(B09):77-81. 被引量:1
  • 4Rivera T.Thermoluminescence in medical dosimetry.Appl Radiat Isot,2012,71 Suppl:30-34.
  • 5Niroomand-Rad A,Harter KW,Thobejane S,et al.Air cavity effects on the radiation dose to the larynx using Co-60,6 MV,and 10 MV photon beams[J].Int J Radiat Oncol Biol Phys,1994,5:1139-1146.
  • 6Papanikolaou N,Battista J, Boyer A, et al. AAPM Report No.85 : tissue inhomogeneity corrections for megavoltage photon beams ~ R] .Ottawa:Medicai Physics Publishing,2004 : 1-135.
  • 7Dobler B, Walter C, Knopf A, et al. Optimization of extracranial stereotactic radiation therapy of small lung lesions using accurate dose calculation algorithms [J]. Radiat Oncol, 2006, 1 : 45. DOI: 10.1186/1748-717X-1-45.
  • 8Reynaert N, Van der Mark SC, Schaart DR, et al. Monte Carlotreatment planning for photon and electron beams [ J ].Radiat Phys Chem, 2007,76 ( 4 ) : 643-686. DOI : 10.1016/j. radphysehem. 2006. 05.015.
  • 9Haedinger U, Krieger T, Flentje M, et al. Influence of calculation model on dose distribution in stereotactic radiotherapy for pulmonary targets [ J] .Int J Radiat Oncol Biol Phys ,2005,61 ( 1 ) : 239-249. DOI : 10. lO16/j.ijrobp.2004.03.028.
  • 10Krieger T, Sauer OA. Monte Carlo-versus pencil-beam-/collapsed- cone-dose calculation in a heterogeneous multi-layer phantom [ J]. Phys Med Bio1,2005,50( 5 ) : 859-868. DOI : 10.1088/0031-9155/ 50/5/010.

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部