期刊文献+

基于单信息初始搜索的特征选择方法研究

Research of Feature Selection Method Based on Single Information Initial Search
下载PDF
导出
摘要 在机器学习任务中,特征选择是重要的数据预处理,可为获得较好的特征数据集,有利于训练产生精确度、可靠性等适应能力较强的学习模型.通过不同的评估策略,应用多种特征选择方法挖掘出有利学习模型的特定数据集,提出了基于单信息特征评估策略作为搜索特征子集的初始方法,并结合典型特征选择方法进行比较研究,实验结果表明该方法可提高分类的运行效率和准确度. In the machine learning task feature selection is an important data preprocessing, and a better feature data set can be obtained, which is beneficial for training to generate a learning model with strong adaptability and accuracy. Through different evaluation strategies, a variety of feature selection methods are used to mine specific data sets of favorable learning models. An initial method based on single feature evaluation strategy as a subset of search features is proposed and compared with typical feature selection methods. It shows that this method can improve the classification efficiency and accuracy.
作者 王伟 徐文彦 WANGWei;XU Wenyan(School of Automation,Henan University of Animal Husbandry and Economy,Zhengzhou 450011,China)
出处 《河南科学》 2018年第10期1511-1515,共5页 Henan Science
基金 河南省重点科技攻关项目(152102110091) 河南省高等学校重点科研项目计划(17A520035)
关键词 机器学习 特征选择 特征子集 搜索 评估策略 machine learning feature selection feature subset search evaluation strategy
  • 相关文献

参考文献11

二级参考文献243

  • 1申展,江宝林,张谧,唐磊,胡运发.互关联后继树模型及其实现[J].计算机应用与软件,2005,22(3):7-9. 被引量:10
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3李颖新,李建更,阮晓钢.肿瘤基因表达谱分类特征基因选取问题及分析方法研究[J].计算机学报,2006,29(2):324-330. 被引量:45
  • 4Zhang M L,Zhou Z-H.M3MIML:A maximum margin methodfor multi-instance multi-label learning [C]. Pisa, Italy: Procee- dings of the 8th IEEE International Conference on Data Mining, 2008:688-697.
  • 5Sun Y-Y, Zhang Y, Zhou Z-H. Multi-label learning with weak label[C].Atlanta,GA:Proceedings of the 24th AAAI Conference on Artificial Intelligence,2010:593-598.
  • 6Tsousmakas G,Zhang M L,Zhou Z H.Leaming from multi-labeldata[C]. Bled,S Iovenia:ECML/PKDD'09,2009.
  • 7Zhang M-L,Zhou Z-H.Multi-label learning by instance differen- tiation [C]. Vancouver, Canada: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,2007:669-674.
  • 8Zhou Z-H,Zhang M-L.Multi-instance multi-label learning with application to scene classification[C].Sch61kopfB,Platt J C,Ho- fmann T, et al.Vancouver, Canada:Advances in Neural lnforma- tJon Processing Systems. Cambridge, MA: MIT Press, 2007: 1609-1616.
  • 9Zhang M-L,Zhou Z-H.A k-nearest neighbor based algorithm for multi-label classification[C].Beijing, China: Proceedings of the I st IEEE International Conference on Granular Computing, 2005:718-721.
  • 10Zhang M-L,Zhou Z-H.Multilabel neural networks with applica- tions to functional genomics and text categorization [J]. IEEE Transactions on Knowledge and Data Engineering,2006,18(10): 1338-1351.

共引文献788

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部