摘要
在机器学习任务中,特征选择是重要的数据预处理,可为获得较好的特征数据集,有利于训练产生精确度、可靠性等适应能力较强的学习模型.通过不同的评估策略,应用多种特征选择方法挖掘出有利学习模型的特定数据集,提出了基于单信息特征评估策略作为搜索特征子集的初始方法,并结合典型特征选择方法进行比较研究,实验结果表明该方法可提高分类的运行效率和准确度.
In the machine learning task feature selection is an important data preprocessing, and a better feature data set can be obtained, which is beneficial for training to generate a learning model with strong adaptability and accuracy. Through different evaluation strategies, a variety of feature selection methods are used to mine specific data sets of favorable learning models. An initial method based on single feature evaluation strategy as a subset of search features is proposed and compared with typical feature selection methods. It shows that this method can improve the classification efficiency and accuracy.
作者
王伟
徐文彦
WANGWei;XU Wenyan(School of Automation,Henan University of Animal Husbandry and Economy,Zhengzhou 450011,China)
出处
《河南科学》
2018年第10期1511-1515,共5页
Henan Science
基金
河南省重点科技攻关项目(152102110091)
河南省高等学校重点科研项目计划(17A520035)
关键词
机器学习
特征选择
特征子集
搜索
评估策略
machine learning
feature selection
feature subset
search
evaluation strategy