摘要
针对目前我国采用的采煤机故障诊断方面存在的弊端,以目前使用比较广泛的电牵引采煤机为研究对象,提出了一套在线故障诊断监测系统。该系统通过信号的提取并将信号进行综合处理、人工智能技术实现对数据的综合处理以及对采煤机故障的精确定位或者是故障发生前的准确预测。
Aiming at the disadvantages of shearer fault diagnosis currently used in China, with the widely used electrictraction shearer as the research object, put forwarda set of online fault diagnosis and monitoring system, and analysisof shearer fault signal extraction and signal processing by using comprehensive the artificial intelligence technology torealize the data of hot and the accurate position of shearer fault or is accurately predicted before the failure occurred. Itlaida foundation for the future development of shearer fault diagnosis.
作者
弓华忠
Gong Huazhong(Xiqu Mine of Xishan Coal and Electricity Group,Gujiao Shanxi 03020)
出处
《机械管理开发》
2018年第10期104-105,267,共3页
Mechanical Management and Development
关键词
采煤机
在线监测
模式识别
故障诊断
shearer
on-line monitoring
pattern recognition
fault diagnosis