摘要
Formation of intermetallic compounds (IMCs) during friction stir welding (FSW) of alu- minum/magnesium (AI/Mg) alloys easily results in the pin adhesion and then deteriorates joint formation. The severe pin adhesion transformed the tapered-and-screwed pin into a tapered pin at a low welding speed of 30 mm/min. The pin adhesion problem was solved with the help of ultrasonic. The weldability of Al/Mg alloys was significantly improved due to the good material flow induced by mechanical vibration and the fragments of the IMCs on the surface of a rotating pin caused by acoustic streaming, respectively. A sound joint with ultrasonic contained long Al/Mg interface joining length and complex mixture of AI/Mg alloys in the stir zone, thereby achieving perfect metallurgical bonding and mechanical interlocking. The ultrasonic could broaden process window and then improve tensile properties. The tensile strength of the Al/Mg joint with ultrasonic reached 115 MPa.
Formation of intermetallic compounds (IMCs) during friction stir welding (FSW) of alu- minum/magnesium (AI/Mg) alloys easily results in the pin adhesion and then deteriorates joint formation. The severe pin adhesion transformed the tapered-and-screwed pin into a tapered pin at a low welding speed of 30 mm/min. The pin adhesion problem was solved with the help of ultrasonic. The weldability of Al/Mg alloys was significantly improved due to the good material flow induced by mechanical vibration and the fragments of the IMCs on the surface of a rotating pin caused by acoustic streaming, respectively. A sound joint with ultrasonic contained long Al/Mg interface joining length and complex mixture of AI/Mg alloys in the stir zone, thereby achieving perfect metallurgical bonding and mechanical interlocking. The ultrasonic could broaden process window and then improve tensile properties. The tensile strength of the Al/Mg joint with ultrasonic reached 115 MPa.
基金
supported by the National Natural Science Foundation of China(No.51204111)
the Program for Liaoning Excellent Talents in University(No.LJQ2015084)
the China Postdoctoral Science Foundation(No.2016M590821)
Guangdong Provincial Key Laboratory of Advanced Welding Technology for Ships(No.2017B030302010)