摘要
Two compositions of CuPd-V system filler alloy were designed for joining the Cf/SiBCN composite. Their dynamic wettability on the Cf/SiBCN composite was studied with the sessile drop method. The CuPd-8 V alloy exhibited a contact angle of 57° after holding at 1170℃ for 30 min, whereas for CuPd-13 V alloy,a lower contact angle of 28°can be achieved after heating at 1200 ℃ for 20 min. Sound Cf/SiBCN joints were successfully produced using the latter filler alloy under the brazing condition of(1170-1230)℃for 10 min. The results showed that the active element V strongly diffused to the surface of Cf/SiBCN composite, with the formation of V2 C/VN reaction layer. The microstructure in the central part of the joint brazed at 1200 ℃ was characterized by the V2 C/VN particles distributing scatteringly in CuPd matrix. The corresponding joints showed the maximum three-point bend strength of 82.4 MPa at room temperature.When the testing temperature was increased to 600 0 C, the joint strength was even elevated to 108.8 MPa.Furthermore, the joints exhibited the strength of 92.4 MPa and 39.8 MPa at 800 ℃ and 900 ℃, respectively.
Two compositions of CuPd-V system filler alloy were designed for joining the Cf/SiBCN composite. Their dynamic wettability on the Cf/SiBCN composite was studied with the sessile drop method. The CuPd-8 V alloy exhibited a contact angle of 57° after holding at 1170℃ for 30 min, whereas for CuPd-13 V alloy,a lower contact angle of 28°can be achieved after heating at 1200 ℃ for 20 min. Sound Cf/SiBCN joints were successfully produced using the latter filler alloy under the brazing condition of(1170-1230)℃for 10 min. The results showed that the active element V strongly diffused to the surface of Cf/SiBCN composite, with the formation of V2 C/VN reaction layer. The microstructure in the central part of the joint brazed at 1200 ℃ was characterized by the V2 C/VN particles distributing scatteringly in CuPd matrix. The corresponding joints showed the maximum three-point bend strength of 82.4 MPa at room temperature.When the testing temperature was increased to 600 0 C, the joint strength was even elevated to 108.8 MPa.Furthermore, the joints exhibited the strength of 92.4 MPa and 39.8 MPa at 800 ℃ and 900 ℃, respectively.
基金
financially supported by the National Natural Science Foundation of China (Grant Nos. 59905022, 50475160 and 51275497)
the Aeronautical Science Foundation of China (Grant No. 2008 ZE21005)