期刊文献+

带有控制增益自校正的甚低轨道卫星自主轨道维持方法 被引量:1

Autonomous Orbit Maintenance Strategy Using Control GainCorrection for Very Low Orbit Satellite
下载PDF
导出
摘要 为实现甚低轨道的长期稳定运行,分析了甚低轨道的摄动特性,设计了一种带有轨控增益校正的自主轨道维持方法。该方法可通过前一次轨控的结果对轨控增益进行校正,提高轨控算法对卫星质量、推力大小等不确定因素的鲁棒性,逐渐提高轨道控制的精度。对轨道控制的频率、每次轨控的时间长度及对偏心率的影响进行了分析,仿真结果表明:自主轨道维持方法能实现甚低轨道高度维持控制,在参数不确定的情况下,与传统算法相比可大幅提高轨道控制的精度,确保平均偏心率矢量收敛,满足甚低轨道卫星的长寿命要求。所设计的算法结构简单,运算量小,可由目前的星载计算机实现。 To realize the long-term stable operation of the satellite in the very low orbit, the perturbation characteristics of the very low orbit are analyzed. An autonomous orbit maintenance method using control gain correction is proposed to improve the robustness of the orbit control algorithm. The orbit control gain can be estimated and corrected based on the result of the last orbit control, which can further reduce the control error under the influence of some parameter uncertainties, such as the mass and the thrust. The period between each orbit control as well as the duration of each control procedure are analyzed. Simulation results show that the proposed method can achieve very low orbit maintenance and guarantee the convergence of the average eccentricity. In comparison with the traditional orbit control algorithm, the proposed method is robust to parameter uncertainties, satisfying the requirement of the very low orbit satellite on the long flight duration. This control gain correction algorithm is simple and available to the current satellite-borne computer.
作者 谢挺 刘刚 高旭东 XIE Ting;LIU Gang;GAO Xudong(Shanghai Institute of Satellite Engineering,Shanghai 201109,China;Shanghai Institute of Spaceflight Control Technology,Shanghai 201109,China)
出处 《上海航天》 CSCD 2018年第5期67-74,共8页 Aerospace Shanghai
基金 上海市青年科技英才扬帆计划(17YF1408300)
关键词 甚低轨道 轨道摄动 自主轨道维持 增益校正 very low orbit orbit perturbation autonomous orbit maintenance gain correction
  • 相关文献

参考文献1

二级参考文献12

  • 1杨嘉墀.航天器轨道动力学与控制(上)[M].北京:中国宇航出版社,2005.
  • 2Krueger J K. Closesat: perigee-lowering techniques and preliminary design for a smaU optical imaging satellite operating in very low earth orbit [ D ]. Cambridge: Massachusetts Institute of Technology, 2010.
  • 3Kuijper D, Matatoros M A G. Goce flight dynamics operations from an orbital perspective [ J ]. Journal of Aerospace Engineering, Sciences and Applications, 2012, 2 (4) : 93 - 106.
  • 4Atsushi N, Masanori H, Masayoshi U. The study of a super low altitude satellite [ C ]. 58th International Astronautical Congress, 2007, IAC -07 - D1.4.06.
  • 5Van Alien, Richard E, James R W. NanoEye-a multi-mission low cost spacecraft [ C ]. Reinventing Space Conference, Los Angeles, CA, May7-11, 2012.
  • 6De Flofio S, D'Amico S. Optimal autonomous orbit control of remote sensing spacecraft [ C ]//Proceedings of the 19th AAS/ AIAA Space Flight Mechanics Meeting, Savannah, USA, 2009:8 - 12.
  • 7Canuto E. Drag-free and attitude control for the GOCE satellite [ J ]. Automatica, 2008, 44 ( 7 ) : 1766 - 1780.
  • 8Masayoshi U, Atsushi N. Orbital maintenance of super low altitude satellite by new frozen orbit [ C ]. The Meeting on the Study of Space Missions Propelled by Low-Thrust and Sustained Acceleration, Tokyo, Japan, Feb 28 - 29, 2008.
  • 9Salama O. Autonomous orbit maintenance law for LEO sun synchronous, earth repeating satellites with electric propulsion system[ C]. AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii, USA, August 18 - 21,2008.
  • 10Fearn D G. Economical remote sensing from a low altitude with continuous drag compensation [ J ]. Acta Astronautica, 2005, 56(5) :555 -572.

共引文献11

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部