期刊文献+

Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress 被引量:15

Beneficial effects of silicon on photosynthesis of tomato seedlings under water stress
下载PDF
导出
摘要 Silicon can improve drought tolerance of plants,but the mechanism still remains unclear.Previous studies have mainly concentrated on silicon-accumulating plants,whereas less work has been conducted in silicon-excluding plants,such as tomato(Solanum lycopersicum L.).In this study,we investigated the effects of exogenous silicon(2.5 mmol L^(-1))on the chlorophyll fluorescence and expression of photosynthesis-related genes in tomato seedlings(Zhongza 9)under water stress induced by 10%(w/v)polyethylene glycol(PEG-6000).The results showed that under water stress,the growth of shoot and root was inhibited,and the chlorophyll and carotenoid concentrations were decreased,while silicon addition improved the plant growth and increased the concentrations of chlorophyll and carotenoid.Under water sterss,chlorophyll fluorescence parameters such as PSII maximum photochemical efficiency(F_v/F_m),effective quantum efficiency,actual photochemical quantum efficiency(Ф_(PSII)),photosynthetic electron transport rate(ETR),and photochemical quenching coefficient(q_P)were decreased;while these changes were reversed in the presence of added silicon.The expressions of some photosynthesis-related genes including PetE,PetF,PsbP,PsbQ,PsbW,and Psb28 were down-regulated under water stress,and exogenous Si could partially up-regulate their expressions.These results suggest that silicon plays a role in the alleviation of water stress by modulating some photosynthesis-related genes and regulating the photochemical process,and thus promoting photosynthesis. Silicon can improve drought tolerance of plants,but the mechanism still remains unclear.Previous studies have mainly concentrated on silicon-accumulating plants,whereas less work has been conducted in silicon-excluding plants,such as tomato(Solanum lycopersicum L.).In this study,we investigated the effects of exogenous silicon(2.5 mmol L^(-1))on the chlorophyll fluorescence and expression of photosynthesis-related genes in tomato seedlings(Zhongza 9)under water stress induced by 10%(w/v)polyethylene glycol(PEG-6000).The results showed that under water stress,the growth of shoot and root was inhibited,and the chlorophyll and carotenoid concentrations were decreased,while silicon addition improved the plant growth and increased the concentrations of chlorophyll and carotenoid.Under water sterss,chlorophyll fluorescence parameters such as PSII maximum photochemical efficiency(F_v/F_m),effective quantum efficiency,actual photochemical quantum efficiency(Ф_(PSII)),photosynthetic electron transport rate(ETR),and photochemical quenching coefficient(q_P)were decreased;while these changes were reversed in the presence of added silicon.The expressions of some photosynthesis-related genes including PetE,PetF,PsbP,PsbQ,PsbW,and Psb28 were down-regulated under water stress,and exogenous Si could partially up-regulate their expressions.These results suggest that silicon plays a role in the alleviation of water stress by modulating some photosynthesis-related genes and regulating the photochemical process,and thus promoting photosynthesis.
出处 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第10期2151-2159,共9页 农业科学学报(英文版)
基金 funded by the National Natural Science Foundation of China (31501750, 31501807, 31471866, 31772290)
关键词 TOMATO water stress SILICON PHOTOSYNTHESIS tomato water stress silicon photosynthesis
  • 相关文献

同被引文献217

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部