期刊文献+

基于多特征融合的早期野火烟雾检测 被引量:7

An Early Wildfire Smoke Detection Method based on Multi-features Fusion
下载PDF
导出
摘要 随着计算机技术的不断发展,基于计算机视觉和模式识别的森林火灾烟雾检测算法具有很大的应用前景。针对目前检测方法适应性不强、在复杂环境下检测识别率不高的问题,提出一种通过融合烟雾多个特征的方法来检测识别早期林火烟雾。算法首先通过一种结合改进的四帧差分法和高斯混合背景建模的算法提取运动前景;然后利用烟雾颜色特征、小波变换分析和LBP纹理特征,利用多特征线性融合并通过K最近邻(KNN)分类算法进行识别。通过在不同视频场景中的实验,证明了该方法在烟雾检测能力上的有效性。 With the development of computer technology,video-based forest fire smoke detection algorithms based on computer vision and pattern recognition have great application prospects. Because the current detection methods are not flexible and recognition rate is not high,this paper proposed a novel wildfire smoke detection algorithm based on multifeatures fusion. Firstly,the algorithm extracts the motion foreground by an improved four-frame difference method and Gaussian Mixture Model. Then,the linear combination of smoke color features,wavelet transform analysis and LBP texture features are used to identify the video by multi-feature linear fusion and KNN classifier. Experiments in different video scenes verify the effectiveness of the proposed method in smoke detection.
作者 张斌 魏维 何冰倩 ZHANG Bin;WEI Wei;HE Bing-qian(College of Computer Sciences,Chengdu University of Information Technology,Chengdu 610225,China)
出处 《成都信息工程大学学报》 2018年第4期408-412,共5页 Journal of Chengdu University of Information Technology
基金 四川省教育厅重点科研资助项目(17ZA0064)
关键词 四帧差分法 高斯混合 多特征线性融合 K最近邻分类算法 烟雾检测 four-frame difference Gaussian mixture model multi-features linear fusion KNN classifier smoke detection
  • 相关文献

参考文献3

二级参考文献22

  • 1方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 2GONZALEZRC.WOODSRE,EDDINSSL.数字图像处理(MATLAB版)[M].阮秋琦,译.北京:电子工业出版社,2009.
  • 3GAO Ping,SUN Xiangju,WANG Wei.Moving object de-tection based on Kirsch operator combined with optical flow[C]//Processings of 2010IEEE Conference on Image Anal-ysis and Signal.[S.l.]:IEEE,2010:620-624.
  • 4GUO He-nan,LIANG Yan-chun,YU Zhe-zhou,et al.Im-plementation and analysis of moving objects detection in vid-eo surveillance[C]//Proceedings of the 2010IEEE Interna-tional Conference on Information and Automation.Harbin,China:IEEE,2010:154-158.
  • 5YAN Rui,SONG Xue-hua,YAN Shu.Moving object de-tection based on an improved Gaussian mixture backgroundmodel[C]//Proceedings of 2009ISECS International Col-loquium on Computing,Communication,Control,and Man-agement.[S.l.]:ISECS,2009:12-15.
  • 6李庆,彭艳芳,江汉红.一种基于三帧差分与高斯模型的运动目标检测算法[EB/OL].[2010-04-26].中国科技论文在线,2010.
  • 7STAUFFER C,GRIMSON W E L.Adaptive backgroundmixture models for real-time tracking[C]//Proceedings ofIEEE Conference on Computer Vision and Pattern Recogni-tion.Fort Collins,Colorado:IEEE,1999,2:246-252.
  • 8陈南.智能建筑火灾监控系统设计[M].北京:清华大学出版社,1999:52-60.
  • 9LIU B CH, AHU J N. Vision based fire detection [ J ]. IEEE Patten Recognition, 2004,4 (23-26) : 134-137.
  • 10HIDEAKI Y, JUNICHI Y. A contour fluctuation data processing method for fire flame detection using a color camera [J]. IEEE Industrial Electronics Society, 2000,2(22-28): 824-829.

共引文献39

同被引文献51

引证文献7

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部