期刊文献+

Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin 被引量:1

Formation of Oxygen Vacancies on the {010} Facets of BiOCl and Visible Light Activity for Degradation of Ciprofloxacin
原文传递
导出
摘要 BiOC1 nanosheets with oxygen vacancies on the exposed {010} facets were assistant-synthesized by triethanolamine(TEOA) via hydrothermal method. We explored the surface properties, crystal structure, morphology and optical absorption ability of the prepared samples via various characterization technologies. The results indicate that the morphologies and microstructures of the obtained samples depend on the amount of TEOA in the synthesis. The addition of TEOA induces the production of oxygen vacancy on the surface of the samples. Therefore, the synthesized samples with TEOA-assistance hold higher photoactivity for the degradation of colorless antibiotic agent ciprofloxacin(CIP) under visible light(λ≥420 nm). The obtained sample upon the addition of 20 mL of TEOA exhibits the highest photocatalytic performance, which is nearly 14 times as high as that of the sample prepared without TEOA and twice as high as that of the prepared samples with NaOH or NH3·H2O. The possible degradation mechanism was discussed on the basis of the experiment results. BiOC1 nanosheets with oxygen vacancies on the exposed {010} facets were assistant-synthesized by triethanolamine(TEOA) via hydrothermal method. We explored the surface properties, crystal structure, morphology and optical absorption ability of the prepared samples via various characterization technologies. The results indicate that the morphologies and microstructures of the obtained samples depend on the amount of TEOA in the synthesis. The addition of TEOA induces the production of oxygen vacancy on the surface of the samples. Therefore, the synthesized samples with TEOA-assistance hold higher photoactivity for the degradation of colorless antibiotic agent ciprofloxacin(CIP) under visible light(λ≥420 nm). The obtained sample upon the addition of 20 mL of TEOA exhibits the highest photocatalytic performance, which is nearly 14 times as high as that of the sample prepared without TEOA and twice as high as that of the prepared samples with NaOH or NH3·H2O. The possible degradation mechanism was discussed on the basis of the experiment results.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2018年第5期711-718,共8页 高等学校化学研究(英文版)
基金 Supported by the National Natural Science Foundation of China(Nos.21563020, 31660483, 41761095).
关键词 BLOC1 NANOSHEET Exposed facet CIPROFLOXACIN PHOTOCATALYSIS BLOC1 Nanosheet Exposed facet Ciprofloxacin Photocatalysis
  • 相关文献

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部