期刊文献+

基于全局约束的监督稀疏保持投影降维方法研究 被引量:2

Supervised Sparsity Preserving Projection Based on Global Constraint
原文传递
导出
摘要 非约束环境下采集的人脸图像复杂多变,稀疏保持投影降维效果不理想。鉴于此,提出一种基于全局约束的监督稀疏保持投影(SSPP-GC)算法。通过引入监督超完备字典和类内紧凑度约束,增强同类非近邻样本的重构关系;并且,在低维投影时增加全局约束因子,使得投影矩阵既考虑了样本的局部稀疏关系,也考虑了全局分布特性,进一步消除异类伪近邻样本的低维映射影响。在AR库、Extended Yale B库、LFW库和PubFig库上进行实验仿真,大量实验结果验证了本文算法的有效性。 The unconstrained face images collected in the real environments are influenced by many complicated and changeable interference factors,and sparsity preserving projection cannot well characterize the low-dimensional discriminant structure embedded in the high-dimensional unconstrained face images,which is important for the subsequent recognition task.To solve this problem,we propose an effective dimensionality reduction method named as supervised sparsity preserving projections based on global constraint(SSPP-GC)which firstly enhances the reconstruction relationship of the same class of samples by adopting supervised over-complete dictionary and coefficient compactness constraints,and then appends the global constraint penalty in the step of the lowdimensional projection to further weaken the influence of other classes of samples.The experimental results on AR,Extended Yale B,LFW and PubFig databases demonstrate the effectiveness of the proposed approach.
作者 童莹 魏以民 沈越泓 Tong Ying;Wei Yimin;Shen Yuehong(College of Communication Engineering,The Army Engineering University of PLA,Nanjing Department of Communication Engineering,Nanjing Institute of Technology,Nanjing,Jiangsu 210007,China Jiangsu 211167,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第9期110-121,共12页 Acta Optica Sinica
基金 国家自然科学基金(61703201 KYTYJJG206) 江苏省自然科学基金(BK20170765)
关键词 图像处理 非约束人脸识别 监督稀疏保持投影 流形学习 全局约束 image processing unconstrained face recognition supervised sparsity preserving projection manifoldlearning global constraint
  • 相关文献

参考文献6

二级参考文献109

  • 1Martinez A M and Kak A C. PCA versus LDA[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(2): 228-233.
  • 2Alibeigi M, Hashemi S, and Hamzeh A. DBFS: an effective density based feature selection scheme for small sample size and high dimensional imbalanced data sets[J]. Data Knowledge Engineering, 2012, 81/82: 67-103.
  • 3Friedman H. Regularized discriminant analysis[J]. Journal of the American Statistical Association, 1989, 84(405): 165 175.
  • 4Li M and Yuan B. 2D-LDA: a novel statistical linear discriminant analysis for image matrix[J]. Pattern Recognition Letters, 2005, 26(5): 527-532.
  • 5Ye J P and Xiong T. Computational and theoretical analysis of null space and orthogonal linear discriminant analysis[J]. Journal of Machine Learning Research, 2006, 7: 1183-1204.
  • 6Yu H and Yang J. A direct LDA algorithm for high- dimensional data with application to face recognition [J]. Pattern Recognition, 2001, 34(11): 2067-2070.
  • 7Wan M H, Lai Z H, and Jin Z. Feature extraction using two-dimensional local graph embedding based on maximum margin criterion[J]. Applied Mathematics and Computation, 2011, 217(23): 9659-9668.
  • 8Ji S W and Ye J P. Generalized linear discriminant analysis: a unified framework and efficient model selection[J]. IEEE Transactions on Neural Networks, 2008, 19(10): 1768-1782.
  • 9Chen L F, Liao H Y M, Ko M T, et al. A new LDA-based face recognition system which can solve the small sample size problem[J]. Pattern Recognition, 2000, 33(10): 1713-1726.
  • 10Belhumeur P N, Hespanha J P, and Kriegman D J. Eiegnfaces vs. fisherfaces: recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.

共引文献109

同被引文献2

引证文献2

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部