期刊文献+

四阶非线性薛定谔方程中呼吸子解的特性研究

Characteristics of Breather Solutions in the Fourth-Order Nonlinear Schrdinger Equation
原文传递
导出
摘要 基于同时包含四阶色散项和四阶非线性项的非线性薛定谔层级结构的四阶可积方程(LPD方程),首先利用达布变换法得到LPD方程的单呼吸子解,并对呼吸子的动力学特性进行研究,得到呼吸子与W型孤子、抖动的W型孤子和周期波的转换关系;其次,借助达布变换的递推关系得到LPD方程的双呼吸子解,并利用呼吸子与孤子之间的转换关系,研究呼吸子与孤子以及呼吸子与周期波的碰撞特性;最后,对双呼吸子的碰撞特性进行更为详细的研究,得到双呼吸子的交叉碰撞、平行叠加及双呼吸子的简并态等动力学特性。 This study is carried out on the basis on the fourth-order integrable equation(LPD equation)of the Schrdinger hierarchy,which contains both fourth-order dispersion terms and fourth-order nonlinear terms.Firstly,using the Darboux transformation method,we drive a one-breather solution of LPD equation,and the dynamic characteristics of the breather are researched.The conversion relations from breather to W-shaped soliton,oscillation W-shaped soliton and periodic wave are obtained.Secondly,with the aid of the recurrence of the Darboux transformation,the two-breather solutions of the LPD equation are obtained,and the collision characteristics between the breather and the soliton,the breather and the periodic wave are studied by using the transition from the breather to the soliton.Finally,the collision characteristics of two-breather are studied in more details,and the conclusion that the dynamic characteristics of two-breather such as cross-collision,parallel superposition and degenerate state of two-breather are obtained.
作者 杜志峰 宋丽军 王艳 Du Zhifeng;Song Lijun;Wang Yan(College of Physics&Electronics Engineering,Shanxi University,Taiyuan,Shanxi 030006,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第9期292-300,共9页 Acta Optica Sinica
基金 国家自然科学基金青年科学基金(11705108)
关键词 非线性光学 孤子 达布变换 呼吸子 简并 nonlinear optics soliton Darboux transformation breather degenerate
  • 相关文献

参考文献3

二级参考文献25

  • 1G I Stegeman, M Segev. Optical spatial solitons and their interactions: Universality and diversity[J]. Science, 1999, 286(5444): 1518-1523.
  • 2A W Snyder, D J Mitchell. Accessible solitons[J]. Science, 1997, 276(5318): 1538-1541.
  • 3C Conti, M Peccianti, G Assanto. Route to nonlocality and observation of accessible solitons [J]. Phys Rev Lett, 2003, 91(7): 073901.
  • 4Conti, M Peccianti, G Assanto. Obsercation of optical spatial solitons in a highly nonlocal medium[J]. Phys Rev Lett, 2004, 92 (11): 113902.
  • 5C Rotschild, O Cohen, O Manela, et al.. Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons[J]. Phys Rev Lett, 2005, 95(21): 213904.
  • 6M Peccianti, C Conti, G Assanto. Interplay between nonlocality and nonlinearity in nematic liquid crystals[J]. Opt Lett, 2005, 30(4): 415-417.
  • 7M Peceianti, C Conti, G Assanto, et al.. Routing of anisotropic spatial solitons and modulational instability in liquid crystals[J]. Nature, 2004, 432(7018): 733-737.
  • 8W Hu, T Zhang, Q Guo, et al.. Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals[J]. Appl Phys Lett, 2006, 89(7): 071111.
  • 9J T K Wan, O K C Tsui, H S Kwok, et al.. Liquid crystal pretitt control by inhomogeneous surfaces[J]. Phys Rev E, 2005, 72(2): 021711.
  • 10M Peccianti, C Conti, G Assanto. All-optical switching and logic gating with spatial solitons in liquid crystals[J]. Appl Phys Lett, 2002, 81 (18): 3335-3337.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部