期刊文献+

Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording 被引量:4

Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording
原文传递
导出
摘要 Advances in neural electrode technologies can have a significant impact on both fundamental and applied neuroscience. Here, we report the development of flexible and biocompatible neural electrode arrays based on a nanopaper substrate. Nanopaper has important advantages with respect to polymers such as hydrophilicity and water wettability, which result in significantly enhanced biocompatibility, as confirmed by both in vitro viability assays and in vivo histological analysis. In addition, nanopaper exhibits high flexibility and good shape stability. Hence, nanopaper-based neural electrode arrays can conform to the convoluted cortical surface of a rat brain and allow stable multisite recording of epileptiform activity in vivo. Our results show that nanopaper-based electrode arrays represent promising candidates for the flexible and biocompatible recording of the neural activity. Advances in neural electrode technologies can have a significant impact on both fundamental and applied neuroscience. Here, we report the development of flexible and biocompatible neural electrode arrays based on a nanopaper substrate. Nanopaper has important advantages with respect to polymers such as hydrophilicity and water wettability, which result in significantly enhanced biocompatibility, as confirmed by both in vitro viability assays and in vivo histological analysis. In addition, nanopaper exhibits high flexibility and good shape stability. Hence, nanopaper-based neural electrode arrays can conform to the convoluted cortical surface of a rat brain and allow stable multisite recording of epileptiform activity in vivo. Our results show that nanopaper-based electrode arrays represent promising candidates for the flexible and biocompatible recording of the neural activity.
出处 《Nano Research》 SCIE EI CAS CSCD 2018年第10期5604-5614,共11页 纳米研究(英文版)
基金 We thank Prof. Qingfei Liu from School of Pharmaceutical Sciences in Tsinghua University for his kind help in cellulose homogenization. We thank Yuchen Lin for his help in AFM analysis. Y. F. thanks to the support from the National Natural Science Foundation of China (Nos. 21673057 and 31600868) and Beijing Science and Technology Program (No. Z161100002116010). H. B. L. thanks to the support from BOE Technology Group Co., Ltd. under the project of nanopaper-based multifunctional flexible sensors and the National Key R&D Program of China (No. 2017YFF0209901).
关键词 NANOPAPER neural electrode BIOCOMPATIBILITY FLEXIBLE EPILEPSY nanopaper neural electrode biocompatibility flexible epilepsy
  • 相关文献

同被引文献25

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部