摘要
在加权L_2-范数下,讨论基于扩充的第二类Chebyshev多项式零点的Hermite插值多项式列在一重积分Wiener空间下的平均误差,得到了相应量的弱渐近阶,所得结果表明结点数量增加有时反而使逼近效果更差.
In the L_2-norm,the average errors of the Hermite interpolation sequence based on the extended Chebyshev nodes of the second kind on the 1-fold integrated Wiener space are discussed,and the weakly asymptotic order is determined.The results show that increasing the numbers of nodes sometimes makes the approximation effect worse.
作者
张妍
赵华杰
许贵桥
ZHANG Yan;ZHAO Huajie;XU Guiqiao(College of Mathematical Science,Tianjin Normal University,Tianjin 300387,China)
出处
《天津师范大学学报(自然科学版)》
CAS
北大核心
2018年第4期9-12,共4页
Journal of Tianjin Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(11471043)