摘要
港口吞吐量预测是港口规划的基础,在确定港口发展方向、投资规模等方面发挥着十分重要的作用,因此有必要对港口吞吐量的发展趋势做出合理的预测.提出了一种融合斯塔克尔伯格模型的港口吞吐量预测方法(Forecasting method of port throughput Stackelberg model,FMPTSM).该方法首先需要将港口吞吐量内具有冲突性的各类大数据分成不同的数据集合,并要求具有相近性质的数据子集能够被分配在同一类中,以此防止港口间吞吐量相互阻塞造成可调度性损失.实验结果表明,该算法预测能力高于同类算法在港口吞吐量预测中的有效性.
Port throughput forecasting is the foundation of port planning. It plays a very important role in determining the direction of port development and the scale of investment. Therefore,it is necessary to make a reasonable forecasting for the development trend of port throughput. A forecasting method of port throughput Stackelberg model is proposed in this paper. Firstly,the method needs to divide the large data of the port throughput into different data sets,and the data subset with similar properties can be assigned to the same class in order to prevent the inter port throughput from blocking and causing the schedulability loss. The experimental results show that the forecasting ability of the algorithm is higher than that of the similar algorithm in port throughput forecasting.
作者
宋凌玉
SONG Ling-yu(Chengyi College,Jimei University,Xiamen 361021,China)
出处
《西安文理学院学报(自然科学版)》
2018年第5期44-48,共5页
Journal of Xi’an University(Natural Science Edition)