期刊文献+

A Robust Graph Optimization Realization of Tightly Coupled GNSS/INS Integrated Navigation System for Urban Vehicles 被引量:6

A Robust Graph Optimization Realization of Tightly Coupled GNSS/INS Integrated Navigation System for Urban Vehicles
原文传递
导出
摘要 This paper describes a robust integrated positioning method to provide ground vehicles in urban environments with accurate and reliable localization results. The localization problem is formulated as a maximum a posteriori probability estimation and solved using graph optimization instead of Bayesian filter. Graph optimization exploits the inherent sparsity of the observation process to satisfy the real-time requirement and only updates the incremental portion of the variables with each new incoming measurement. Unlike the Extended Kalman Filter (EKF) in a typical tightly coupled Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integrated system, optimization iterates the solution for the entire trajectory. Thus, previous INS measurements may provide redundant motion constraints for satellite fault detection. With the help of data redundancy, we add a new variable that presents reliability of GNSS measurement to the original state vector for adjusting the weight of corresponding pseudorange residual and exclude faulty measurements. The proposed method is demonstrated on datasets with artificial noise, simulating a moving vehicle equipped with GNSS receiver and inertial measurement unit. Compared with the solutions obtained by the EKF with innovation filtering, the new reliability factor can indicate the satellite faults effectively and provide successful positioning despite contaminated observations. This paper describes a robust integrated positioning method to provide ground vehicles in urban environments with accurate and reliable localization results. The localization problem is formulated as a maximum a posteriori probability estimation and solved using graph optimization instead of Bayesian filter. Graph optimization exploits the inherent sparsity of the observation process to satisfy the real-time requirement and only updates the incremental portion of the variables with each new incoming measurement. Unlike the Extended Kalman Filter (EKF) in a typical tightly coupled Global Navigation Satellite System/Inertial Navigation System (GNSS/INS) integrated system, optimization iterates the solution for the entire trajectory. Thus, previous INS measurements may provide redundant motion constraints for satellite fault detection. With the help of data redundancy, we add a new variable that presents reliability of GNSS measurement to the original state vector for adjusting the weight of corresponding pseudorange residual and exclude faulty measurements. The proposed method is demonstrated on datasets with artificial noise, simulating a moving vehicle equipped with GNSS receiver and inertial measurement unit. Compared with the solutions obtained by the EKF with innovation filtering, the new reliability factor can indicate the satellite faults effectively and provide successful positioning despite contaminated observations.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第6期724-732,共9页 清华大学学报(自然科学版(英文版)
关键词 Global Navigation Satellite System (GNSS) sensor fusion Inertial Navigation System (INS) OPTIMIZATION factor graph tightly coupled integration Global Navigation Satellite System (GNSS) sensor fusion Inertial Navigation System (INS) optimization factor graph tightly coupled integration
  • 相关文献

同被引文献23

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部