摘要
针对当前数控机床自动化控制与诊断要求,结合当前的自动化技术,以CAK6150数控车床为具体实例,对数控机床控制系统展开研究,并提出了基于Fanuc系统的数控机床控制与诊断方案。为实现该方案,文章首先对CAK6150数控车床的主要控制模式进行简单的介绍,然后采用CNC/PMC结构对控制系统的参数和信号进行控制。同时为提高该数控机床的智能化水平,重点引入基于模糊理论的神经网络模型,通过模糊推理规则完成对故障类型的分类判断,进而判断出机床的故障类型。最后,对上述的方案进行验证,结果表明该方案不仅可以对故障进行判断,还可以提高机床加工的效果。
In view of the current CNC machine tool automatic control and diagnosis requirements,combined with the current automation technology,taking CAK6150 CNC lathe as an example,the CNC machine tool control system is studied,and a CNC machine control and diagnosis scheme based on Fanuc system is put forward.To achieve this plan,the paper first introduces the main control mode of CAK6150 CNC lathe,and then uses CNC/PMC structure to control the parameters and signals of the control system.At the same time,in order to improve the intellectualization level of the NC machine tool,a neural network model based on fuzzy theory is mainly introduced,and the classification of faults is completed through fuzzy inference rules,and then the fault types of machine tools are identified. Finally,the above scheme is verified.The results show that the scheme can not only judge the fault,but also improve the effect of machine tool processing.
作者
周少梅
ZHOU Shaomei(Anhui Bengbu technician college zip code,Anhui Bengbu,23300)
出处
《自动化与仪器仪表》
2018年第10期105-108,共4页
Automation & Instrumentation
关键词
数控机床控制
故障诊断
模糊神经网络
CNC machine tool control
fault diagnosis
fuzzy neural network