期刊文献+

平面微重力模拟气浮系统的侧向力测量与处理 被引量:1

Lateral Force Measurement and Processing of Planar Air-Bearing System for Microgravity Simulation
下载PDF
导出
摘要 利用测力法可直接测量平面气浮系统的侧向力,该方法通过在系统周向布设加载了预紧力的横向张力计,根据浮起前后张力计的变化量可获得气浮系统侧向力及其绕中心转矩;为进一步估计搭接位置的摩擦力,对摩擦系数和侧向力进行联合估计,为解决最小二乘算法的矩阵亏秩,将求解状态问题转化为带约束的最小值问题。测试实例结果表明,在一定的预紧力范围内,当静摩擦力不改变测试的运动趋势时,静摩擦有无参与联合状态估计对侧向力的特性估计结果影响有限。 An approach of direct force measurement is proposed to estimate the lateral force of a planar air cushion system. Lateral force gauges are arranged around the planar air bearing platform with preloading force exerted before afloat. Lateral force and its torque with respect to the geometric center can be obtained from the gauge variations while the afloat system reaches balance. Friction coefficient in every touch-spot can be evaluated with least square state estimation, which changes to a generic minimum problem with constraints since its solution matrix has a rank deficit. The analysis based on the test of a specified platform reveals there is desirable difference between estimation with friction and one without, if the preloading force is less than the critical value across which the direction chanees.
作者 李新峰 向东 田兴华 魏伟 Li Xinfeng1, Xiang Dong2, Tian Xinghua1, Wei Wei2(1. Key Laboratory of Space Utilization, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing 100094, China; 2. Pneumatics Center, Harbin Institute of Technology, Harbin 150001, China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第10期3746-3752,共7页 Journal of System Simulation
基金 中科院前沿重点研究项目(QYZDY-SSW-JSC03)
关键词 平面气浮 侧向力 侧向力转矩 摩擦系数 亏秩 奇异值分解 planar air-bearing system lateral force torque of lateral force friction coefficient deficitrank singular value decomposition
  • 相关文献

参考文献5

二级参考文献36

  • 1李延斌,包钢,王祖温,吕彦东.三自由度气浮台自动平衡系统动力学建模[J].中国惯性技术学报,2005,13(5):82-86. 被引量:12
  • 2孔令云,周凤岐.用三轴气浮台进行混沌控制与反控制研究[J].宇航学报,2007,28(1):99-102. 被引量:10
  • 3Young J S. Development of an Automatic Balancing System for a Small Satellite Attitude Control Simulator. Masters Thesis: Utah State University, 1998. 66-69
  • 4Schwartz J S, Peck M A, Hall C D. Historical review ofspacecraft simulators. In: AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 2003
  • 5Miller D et al. Spheres: A testbed for long durationsatellite formation flying in micro-gravity conditions. In:Proceedings of the AAS/AIAA Space Flight Mechanics Meeting. Clearwater, Florida, 2000. 167-179
  • 6Glover K E. Development of a large support surface for an air-bearing type zero-gravity simulator. NASA Technical Memorandum NASA-TM-X-72-80
  • 7Schubert H, How J. Space construction: an experimental test bed to develop enabling technologies. In: Proceedings of the Conferenceon Telemanipulator and Telepresence Technologies IV, No.98-17930. Pittsburgh, Pennsylvania, 1997. 179-188
  • 8Matunaga S, Yoshihara K, Takahashi T, Tsurumi S, Ui K. Ground experiment system for dual-manipulatorbased captureof damaged satellites. In: Proceedings of the IEEE/RS J International Conference on Intelligent Robots and Systems, No. 92-4308. Kagawa University, Takamatsu, Japan, 2000. 1847-1852
  • 9Spencer M G. Development of a servicing satellite simulator. In: Proceedings of the AIAA space conference and exposition. New Mexico: Albuquerque, 2001. 28-30
  • 10HuB G, Mann G K I, Gosine R G. A Systematic study of fuzzy pid controllers-function-based evaluation approach. Sub. IEEE Trans. Fuzzy Sys., 2001, 9(5):699-712

共引文献33

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部