期刊文献+

捕食-被食动力学优化算法 被引量:3

Predator-prey Dynamics-based Optimization
下载PDF
导出
摘要 为了解决复杂函数优化问题,提出了捕食-被食动力学优化算法。该算法假设在某生态系统中有捕食者和被食者两个种群。两类种群内部有竞争,种群内部密度越高竞争越激烈,种群特征更容易产生变化;强壮种群更容易在竞争中战胜弱势种群,从而使得自身特征发生较大改变。捕食者种群食用被食者种群后,其特征也发生变化。根据上述特点构造出了竞争算子、捕食-被食算子和生长算子,这些算子有利于使搜索跳出局部陷阱。本算法具有全局收敛性的特点,可求解一类极复杂优化问题。 To solve the complex function optimization problem, a predator-prey dynamics optimization algorithm is proposed. The algorithm assumes that there are two species of predator and prey in an ecosystem. There is competition among the same species, the higher the population density, the more intense the competition, and then characteristics of populations are more likely to produce changes; strong populations are more likely to defeat weak populations when competition, and thus to obtain significant changes in their own characteristics. When predator populations eat prey populations, their characteristics also change. The competition operator, the predator-prey operator and the growth operator are constructed by use of the above relationship of ecosystem phenomena, these operators are helpful to make the search jump out of the local trap. The algorithm is globally convergent and can be used to solve a class of extremely complex optimization problems.
作者 陆秋琴 黄光球 Lu Qiuqin, Huang Guangqiu(School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2018年第10期3975-3984,共10页 Journal of System Simulation
基金 陕西省自然科学基础研究计划-重点项目(2015JZ010) 陕西省教育厅服务地方专项计划(16JF015) 教育部人文社会科学研究规划基金一般项目(15YJA910002) 陕西省社会科学基金(2014P07)
关键词 进化算法 智能优化计算 启发式搜索 种群动力学 捕食-被食动力学模型 evolution algorithm intelligent optimization algorithm meta-heuristic search populationdynamics predator-prey dynamics model
  • 相关文献

参考文献7

二级参考文献117

  • 1黄永青,陆青,梁昌勇,杨善林,郝国生.交互式多智能体进化算法及其应用[J].系统仿真学报,2006,18(7):2030-2032. 被引量:9
  • 2谢克明,邱玉霞.基于数列模型的思维进化算法收敛性分析[J].系统工程与电子技术,2007,29(2):308-311. 被引量:8
  • 3Liu J X, Wang F, Xie K M. Application of improved mind evolutionary algorithm in wideband impendence transformer design [C]. Proceeding of the 4th International Conference on Natural Computation (ICNC' 08), Jinan, China, 2008: 428-432.
  • 4Liu H B, Ajith A, Maurice C. Chaotic dynamic characteristics in swarm intelligence[J]. Applied Soft Computing, 2007, 7(3): 1019-1026.
  • 5Robert B. Swarm intelligence and robotics[J]. Industrial Robot, 2008, 35(6): 488-495.
  • 6Kennedy J, Eberhart R C, Shi Y. Swarm Intelligence[M]. San Francisco, USA: Morgan Kaufmann Publishers, 2001.
  • 7Millonas M M. Swarms, phase transitions, and collective intelligence[C]. C. G. Langton Artificial Life III. Santa Fe Institute Studies in the Sciences of Complexity, 1994: 417-445.
  • 8Reynolds C W. Flocks, herds and schools: a distributed behavioral model[C]. SIGGRAPH '87: Proceedings of the 14th annual conference on computer graphics and interactive techniques, New York, NY, USA, ACM Press, 1987: 25-34.
  • 9Eberhart, Shi Y H. Particle swarm optimization:developments, applications and resources[C]. Proceedings of the 2001 Congress on Evolutionary Computation, South Korea, 2001: 81-86.
  • 10焦李成.免疫优化计算、学习与识别[M].北京:科学出版社,2007.

共引文献23

同被引文献25

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部