摘要
为了解决复杂函数优化问题,提出了捕食-被食动力学优化算法。该算法假设在某生态系统中有捕食者和被食者两个种群。两类种群内部有竞争,种群内部密度越高竞争越激烈,种群特征更容易产生变化;强壮种群更容易在竞争中战胜弱势种群,从而使得自身特征发生较大改变。捕食者种群食用被食者种群后,其特征也发生变化。根据上述特点构造出了竞争算子、捕食-被食算子和生长算子,这些算子有利于使搜索跳出局部陷阱。本算法具有全局收敛性的特点,可求解一类极复杂优化问题。
To solve the complex function optimization problem, a predator-prey dynamics optimization algorithm is proposed. The algorithm assumes that there are two species of predator and prey in an ecosystem. There is competition among the same species, the higher the population density, the more intense the competition, and then characteristics of populations are more likely to produce changes; strong populations are more likely to defeat weak populations when competition, and thus to obtain significant changes in their own characteristics. When predator populations eat prey populations, their characteristics also change. The competition operator, the predator-prey operator and the growth operator are constructed by use of the above relationship of ecosystem phenomena, these operators are helpful to make the search jump out of the local trap. The algorithm is globally convergent and can be used to solve a class of extremely complex optimization problems.
作者
陆秋琴
黄光球
Lu Qiuqin, Huang Guangqiu(School of Management, Xi'an University of Architecture and Technology, Xi'an 710055, China)
出处
《系统仿真学报》
CAS
CSCD
北大核心
2018年第10期3975-3984,共10页
Journal of System Simulation
基金
陕西省自然科学基础研究计划-重点项目(2015JZ010)
陕西省教育厅服务地方专项计划(16JF015)
教育部人文社会科学研究规划基金一般项目(15YJA910002)
陕西省社会科学基金(2014P07)
关键词
进化算法
智能优化计算
启发式搜索
种群动力学
捕食-被食动力学模型
evolution algorithm
intelligent optimization algorithm
meta-heuristic search
populationdynamics
predator-prey dynamics model