期刊文献+

基于A~*蚁群算法的无人机航路规划 被引量:21

Path planning of UAVs using A~* ant colony algorithm
原文传递
导出
摘要 针对低空密集复杂环境,在构建环境模型及无人机模型的基础上,提出了一种综合运用A~*算法与蚁群算法的智能航路规划方法。其中A~*算法用于全局航路规划,蚁群算法用于局部路径重规划,利用A~*算法的导向性克服蚁群算法收敛速度慢的缺点,能够使无人机快速到达目标点。仿真结果表明,A~*蚁群算法不仅可以全局引导蚁群算法快速收敛,使无人机快速飞向目标点,同时也可以在局部环境中规避障碍,保证无人机的飞行安全。 To low-altitude and crowded environment,this paper proposed a path planning method which applies A^*algorithm and ant colony algorithm based on factor models built in this paper. A^*and ant colony are applied to global and local path planning respectively,which make the UAV reach target position quickly. Simulation results indicate that the A^*ant colony algorithm can not only guide UAVs to target positions,but also avoid threats,thus ensuring the safety in path planning.
作者 冯国强 赵晓林 高关根 寇磊 FENG Guo-qiang;ZHAO Xiao-lin;GAO Guan-gen;KOU Lei(Equipment Management and UAV Engineering College,AFEU,Xi'an 710043,China;Key Laboratory of Aeronautical Science and Technology for Inertial Technology,Xi'an Flight Automatic Control Research Institute,Xi'an 710065,China)
出处 《飞行力学》 CSCD 北大核心 2018年第5期49-52,57,共5页 Flight Dynamics
基金 国家自然科学基金资助(61503405) 航空科学基金资助(20160896007)
关键词 无人机 航路规划 A^*算法 蚁群算法 UAV path planning A^* algorithm ant colony algorithm
  • 相关文献

参考文献12

二级参考文献108

共引文献163

同被引文献174

引证文献21

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部