期刊文献+

基于联合TDOA/FDOA的单站无源相干定位CWLS算法 被引量:3

A Single-Observer Passive Coherent Location CWLS Algorithm Based on Joint TDOA/FDOA
下载PDF
导出
摘要 针对利用单站实现对运动目标位置和速度的估计精度不够理想的问题,提出了一种基于联合TDOA/FDOA的单站无源相干定位(PCL)约束加权最小二乘(CWLS)算法。首先根据运动目标、观测接收站与机会照射源三者之间构建的联合TDOA/FDOA方程,建立伪线性方程并将其线性化,然后根据目标到观测接收站的距离与目标位置之间的函数约束关系,建立为CWLS定位模型,并采用迭代方法进行求解。仿真实验和结果分析表明,在存在测量误差的情况下,该算法仍然能够逼近克拉美罗界(CRLB)。 To solve the target location's estimation accuracy is not good enough for the single-observer passive coherent location(PCL) using illuminators of opportunity,a constrained weighted least squares(CWLS) location algorithm based on time differences and frequency differences of arrival is proposed. Firstly,introducing the range from the target to the observer and illuminators of opportunity as the additional variable,the TDOA and FDOA measurement equations are linearized. Considering the relationship between the additional variable and the target location,the location problem is established as a CWLS model. To solve the CWLS model to obtain the estimation of the target position and velocity,the solution is derived based on iterative method. Finally,the theoretical error and the Cramer Rao Lower Bound(CRLB) are also derived. Simulation results show that the proposed algorithm approaches the CRLB at high noise level.
作者 梁加洋 苏文璞 赵拥军 赵闯 LIANG Jia-yang;SU Wen-pu;ZHAO Yong-jun;ZHAO Chuang(School of Navigation and Aerospace Engineering,PLA Information Engineering University,Zhengzhou 450001,China)
出处 《电子信息对抗技术》 2018年第5期31-36,共6页 Electronic Information Warfare Technology
关键词 无源相干定位 约束加权最小二乘 到达时差 到达频差 克拉美罗界 Passive Coherent Location (PCL) Constrained Weighted Least Squares (CWLS) Time Difference Of Arrival ( TDOA) Frequency Difference Of Arrival ( FDOA) Cramer RaoLower Bound (CRLB)
  • 相关文献

参考文献7

二级参考文献57

  • 1席林东,占明锋,邢昌风,石章松.基于多声纳基阵FDOA的联合定位技术及精度分析[J].舰船电子工程,2008,28(9):91-94. 被引量:5
  • 2CAFFERY J. A new approach to the geometry of TOA location [C]//1EEE VTC2000 Fall September 24- 28, Boston, USA, 2000 : 1943 - 1949.
  • 3HUANG Y T. An Efficient Linear-correction Lesat-squares Approach to Source Localization[ C]//IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics, 2001:67 - 70.
  • 4VENKATRAMAN S, CAFFERY J, YOU H R. Location using LOS range estimation in NLOS environments [ C]//IEEE VTC 2002 Spring, May 6 - 9, Birmingham, UK, 2002 (2): 856 - 860.
  • 5Foy W H. Position-location solution by Taylor-series estimation [J]. IEEE Transactions on Aerospace and Electronic Systems, 1976, 12(2): 187-194.
  • 6Kovavisaruch L, Ho K C. Modified taylor-series method for source and receiver localization using TDOA measurements with erroneous receiver positions//ISCAS. 2005: 2295-2298.
  • 7Kay S M. Fundamentals of statistical signal process, estimation theory[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 8Xiong J Y, Wang W, Zhu Z L. An improved Taylor algorithm in TDOA subscriber position location//Proceeding of ICCT. 2003: 981-984.
  • 9Cater G C. Time delay estimation for passive sonar signal processing[J]. IEEE Transactions on Acoust, Speech and Signal Processing, 1981, 29(3): 462-470.
  • 10Weinstein E. Optimal source localization and tracking from passive array measurements[J]. IEEE Transactions on Acoust, Speech and Signal Processing, 1982, 30(1): 69-76.

共引文献60

同被引文献23

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部