摘要
为使一类代表着几种各向异性材料混合物的椭圆型算子的第一特征值达到最大,本文考虑凸化问题和均匀化意义下的松弛问题.本文发现这两种问题的解在某种意义上是等同的,并建立了存在性结果和必要条件.
To maximize the principal eigenvalue of the elliptic operators for the mixture of several anisotropic materials, both convexification problems and relaxed problems by homogenization are considered. It is found that the solutions of the two types of problems are equivalent in some sense. Both existence results and necessary conditions are established.
作者
楼红卫
尹雪元
Hongwei Lou;Xueyuan Yin
出处
《中国科学:数学》
CSCD
北大核心
2018年第10期1395-1414,共20页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11371104和11771097)资助项目
关键词
最优化
最优控制
复合材料
特征值
均匀化
各向异性
optimization
optimal control
composite materials
eigenvalue
homogenization
anisotropic