期刊文献+

基于超像素的Graph-Based图像分割算法 被引量:4

Graph-Based Image Segmentation Based on Superpixels
原文传递
导出
摘要 针对EGBIS分割算法中的过分割问题,提出了一种基于超像素的graph-based图像分割算法SGBIS.首先,对图像进行基于简单线性迭代聚类(SLIC)的超像素预分割;然后以每个超像素作为节点构造带权无向图,以相邻超像素颜色平均值的欧式距离作为图中边的权值;最后利用基于图的算法合并超像素得到分割结果.用VI、PRI和F值3个指标分析了算法性能,结果表明,新算法可以得到更为理想的分割效果;引入交互分割区域合并,也可满足用户图像分割的需求. As graph-based algorithm is inclined to over-segment,a new graph-based image segmentation algorithm based on superpixels called superpixel graph based image segmentation(SGBIS) was proposed and simple linear iterative clustering(SLIC) superpixels segmentation was employed as pre-segmentation. Then,the weighted undirected graph regarding superpixels as nodes was constructed,the Euclidean distance of adjacent superpixels' average color is used as the weight. Finally,the segmentation results are obtained by merging superpixels based on graph-based algorithm. Three indexes variation of information(VI),probabilistic rand index(PRI) and F-measure are introduced to evaluate algorithm. Experiments show that it can get better segmentations. An interactive region merging interface is also introduced,which could meet users need very well.
作者 贾耕云 赵海英 刘菲朵 李学明 JIA Geng-yun;ZHAO Hai-ying;LIU Fei-duo;LI Xue-ming(School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China)
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2018年第3期46-50,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(61163044) 北京市科委项目(z141100001914035) 财政部项目(GSSKS-2015-035)
关键词 graph-based 超像素 图像分割 评价指标 graph-based superpixels image segmentation evaluation index
  • 相关文献

参考文献4

二级参考文献45

  • 1薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 2Haralick R,Shapiro L.Image segmentation techniques[J].Computer Vision,Graphics,and Image Processing,1985,29(1):100-132.
  • 3Yang A Y,Wright J,Ma Y,et al.Unsuperrised segmentation of natural images via lossy data compression[J].Computer Vision and Image Understanding,2008,110(2):212-225.
  • 4Tu Z,Zhu S C.Image segmentation by data-driven Markov chain Monte Carlo[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):657-673.
  • 5Zhu S,Yuille A.Region competition:unifying snakes,region growing,and Bayes/MDL for multiband image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18 (9):884-900.
  • 6Yu S.Segmentation induced by scale invariance[C]// Proceedings of International Conference on Computer Vision and Pattern Recognition.Washington-IEEE Computer Society Press,2005-444-451.
  • 7Comanicu D,Meer P.Mean shift:a robust approach toward feature space analysis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(5):603-619.
  • 8Shi J,Malik J.Normalized cuts and image segmentation[C]// Proceedings of International Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society Press,1997; 731-737.
  • 9Felzenszwalb P,Huttenlocher D.Efficient graph-based image segmentation[J].International Journal on Computer Vision,2004,59(2):167-181.
  • 10Kanungo T,Dom B,Niblack W,et al.A fast algorithm for MDL-based multi-band image segmentation[C]// Proceedings of International Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society Press,1994; 609-616.

共引文献38

同被引文献11

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部