期刊文献+

基于特征融合网络的自然场景文本检测 被引量:3

Scene Text Detection Based on Feature Fusion Network
下载PDF
导出
摘要 目前,基于深度学习的自然场景文本检测在复杂的背景下取得很好的效果,但难以准确检测到小尺度文本.本文针对此问题提出了一种基于特征融合的深度神经网络,该网络将传统深度神经网络中的高层特征与低层特征相融合,构建一种高级语义的神经网络.特征融合网络利用网络高层的强语义信息来提高网络的整体性能,并通过多个输出层直接预测不同尺度的文本.在ICDAR2011和ICDAR2013数据集上的实验表明,本文的方法对于小尺度的文本,定位效果显著.同时,本文所提的方法在自然场景文本检测中具有较高的定位准确性和鲁棒性, F值在两个数据集上均达到0.83. At present, scene text detection based on deep learning has achieved good performance in complex background.However, it is difficult to precisely detect text with small scale. To solve this problem, this study proposes a deep neural network based on feature fusion, and a new neural network with senior semantic is constructed by combining the highlevel feature and low-level feature of traditional deep neural network. Strong semantic information of the high layer network is utilized to improve the overall performance of the neural network, and the feature fusion network directly predicts text with multiple scales through multiple output layers. Experimental results on ICDAR2011 and ICDAR2013 datasets show that proposed method is significantly effective in detecting small scale text. Meanwhile, the proposed method has high accuracy and robustness in scene text detection, and the F-measure achieves 0.83 on both datasets.
作者 余峥 王晴晴 吕岳 YU Zheng;WANG Qing-Qing;LYU Yue(School of Computer Science and Software Engineering,East China Normal University,Shanghai 200062,China)
出处 《计算机系统应用》 2018年第10期1-10,共10页 Computer Systems & Applications
基金 上海市自然科学基金(17ZR1408200)~~
关键词 深度学习 自然场景 文本检测 特征融合 文本边界框 deep learning natural scene text detection feature fusion text bounding boxes
  • 相关文献

参考文献4

二级参考文献15

  • 1王勇,郑辉,胡德文.图像和视频中的文字获取技术[J].中国图象图形学报(A辑),2004,9(5):532-538. 被引量:13
  • 2王建宇,张峰,周献中,史迎春,骆文.利用小波变换和K均值聚类实现字幕区域分割[J].计算机辅助设计与图形学学报,2006,18(10):1508-1512. 被引量:10
  • 3陈振学,汪国有,刘成云.一种新的车牌图像字符分割与识别算法[J].微电子学与计算机,2007,24(2):42-44. 被引量:16
  • 4章毓晋.图像处理和分析技术[M].北京:高等教育出版社,2008.
  • 5Anh-Nga L, Gueesang L.Binarization by local K-means clustering for Korean text extraction[C]//IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008, 2008:117-122.
  • 6Yaowen Z, Weiqiang W, Wen G.A robust split-and-merge text segmentation approach for images[C]//18th International Conference on Pattern Recognition, ICPR 2006,2006:1002-1005.
  • 7Lienhart R, Wernicke A.Loealizing and segmenting text in images and videos[J].IEEE Transactions on Circuits and Systems for Video Technology, 2002,12 (4) : 256-268.
  • 8CHANG S L, CHEN L S, CHUNG Y C, et al. Automatic license plate recognition [J]. IEEE Transactions on Intelli- gent Transportation System, 2004, 5(1): 42-53.
  • 9秦襄培,郑贤中.Madab图像处理宝典[M].北京:电子工业出版社,2011.
  • 10DOUGHERTY E R. Introduction to morphological image processing [M]. Bellingham: SPIE, 1992.

共引文献46

同被引文献31

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部