摘要
针对在数据挖掘过程中存在的维度灾难和特征冗余问题,本文在传统特征选择方法的基础上结合强化学习中Q学习方法,提出基于强化学习的特征选择算法,智能体Agent通过训练学习后自主决策得到特征子集.实验结果表明,本文提出的算法能有效的减少特征数量并有较高的分类性能.
For the dimensional disaster and feature redundancy problems in the process of data mining, a reinforcement learning based feature selection algorithm, which is combined Q learning methods with traditional feature selection methods, is proposed in this study. In the proposed method, the agent acquires a subset of characteristics autonomously through training and learning. Experimental results show that the proposed algorithm can effectively reduce the number of features and has higher classification performance.
作者
朱振国
赵凯旋
刘民康
ZHU Zhen-Guo;ZHAO Kai-Xuan;LIU Min-Kang(School of Information Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
出处
《计算机系统应用》
2018年第10期214-218,共5页
Computer Systems & Applications
关键词
强化学习
特征选择
Q学习
特征子集
数据挖掘
reinforcement learning
feature selection
Q-learning
feature subset
data mining