期刊文献+

基于强化学习的特征选择算法 被引量:3

Feature Selection Algorithm Based on Reinforcement Learning
下载PDF
导出
摘要 针对在数据挖掘过程中存在的维度灾难和特征冗余问题,本文在传统特征选择方法的基础上结合强化学习中Q学习方法,提出基于强化学习的特征选择算法,智能体Agent通过训练学习后自主决策得到特征子集.实验结果表明,本文提出的算法能有效的减少特征数量并有较高的分类性能. For the dimensional disaster and feature redundancy problems in the process of data mining, a reinforcement learning based feature selection algorithm, which is combined Q learning methods with traditional feature selection methods, is proposed in this study. In the proposed method, the agent acquires a subset of characteristics autonomously through training and learning. Experimental results show that the proposed algorithm can effectively reduce the number of features and has higher classification performance.
作者 朱振国 赵凯旋 刘民康 ZHU Zhen-Guo;ZHAO Kai-Xuan;LIU Min-Kang(School of Information Science and Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
出处 《计算机系统应用》 2018年第10期214-218,共5页 Computer Systems & Applications
关键词 强化学习 特征选择 Q学习 特征子集 数据挖掘 reinforcement learning feature selection Q-learning feature subset data mining
  • 相关文献

参考文献9

二级参考文献231

  • 1罗来平,宫辉力,刘先林.基于决策树算法的遥感图像分类研究与实现[J].计算机应用研究,2007,24(1):207-209. 被引量:15
  • 2VAPNIK V N. An overview of statistical learning theory [ J ]. IEEE Transactions on Neural Networks, 1999,10 (5) :988-999.
  • 3CRISTIANINI N, SHAWE-TAYLOR J. Introduction to support vector machine and other kernel based learning machine[M]. Cambridge: Cambridge University Press, 2000.
  • 4VAPNIK V N, VAPNIK V. Statistical learning theory[M]. New York: Wiley New York,1998.
  • 5WESTON J, MUKHERJEE S, CHAPELLE O, et al. Feature selection for SVMs[J ]. Advances in Neural Information Processing Systems, 2001: 668-674.
  • 6WANG L, YU J. Fault feature selection based on modified binary PSO with mutation and its application in chemical process fault diagnosis[ J]. Lecture Notes in Computer Science, 2005, 3612:832.
  • 7DE FALCO I, DELLA CIOPPA A, TARANTINO E. Facing classification problems with particle swarm optimization [ J ]. Applied Soft Computing Journal, 2007, 7( 3 ) :652-658.
  • 8MAO K Z. Feature subset selection for support vector machines through discriminative function pruning analysis [ J ]. IEEE Transactions on Systems, Man, and Cybernetics: Part B, 2004, 34( 1 ) :60-67.
  • 9SINDHWANI V, RAKSHIT S, DEODHARE D, et al. Feature selection in MLPs and SVMs based on maximum output information[ J]. IEEE Transactions on Neural Networks, 2004, 15 (4) :937-948.
  • 10LIN S W, YING K C, CHEN S C, et al. Particle swarm optimization for parameter determination and feature selection of support vector machines [ J ]. Expert Systems with Applications, 2008, 35 ( 4 ) : 1817-1824.

共引文献406

同被引文献28

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部