摘要
近年来,对象识别方法被应用到多个领域.如人脸检测,车辆检测.然而模型训练所需要的边框标定需要很大的工作量.本文通过基于迁移学习的方法,将物体检测任务迁移到商品检测,且不需要边框标定.本文在分类层和边框回归层之间建立关系层,来学习两种任务之间的关联.本文建立了一个商品数据集,并提出了一种深度学习训练方法,解决了可旋转物体的检测问题.基于Faster RCNN框架,本文提出一种候选选择方法,可以在无边框标定情况下训练商品分类.本文提出的商品检测方法不需要边框标定,而且很容易训练并应用到其它数据集.
In recent years, object detection is transferred to other fields, for example, face and vehicle detection. However,the bounding-box labeling is a huge resources cost work. This study solves the problem that transfer object detection task to other domain dataset without bounding-box label. A relationship layer is built to learn the relationship between classification and regression task. In addition, we construct a product dataset, on which rotatable object detection is solved using our training method. A proposal selecting method is proposed for training classification based on faster RCNN framework without bounding-box label. We propose a object detection method without bounding-box annotation. The method is easy to transfer to other datasets and training.
作者
胡正委
朱明
HU Zheng-Wei;ZHU Ming(School of Information Science and Technology,University of Science and Technology of China,Hefei 230031,China)
出处
《计算机系统应用》
2018年第10期226-231,共6页
Computer Systems & Applications
基金
中科院先导专项课题(XDA06011203)~~
关键词
物体检测
迁移学习
关系层
深度学习训练方法
边框标定
object detection
transfer learning
relationship layer
training method
bounding-box label