期刊文献+

三阶中立型时滞动力方程的振动性

Oscillation of Third-Order Neutral Delay Dynamic Equations
下载PDF
导出
摘要 本文首次研究时间尺度上一类新的二阶具有阻尼项的非线性时滞中立型动力方程的振动性的问题.利用时间尺度上的微积分理论、Riccati变换和不等式技巧的方法,获得方程振动的一些新的结果,推广已有文献的结果,丰富了三阶时滞动力方程的振动性.最后,通过例子验证了相关的结果. In this paper, we consider a new class of third-order neutral delay dynamic equations on time scales, apply Riccati transform, inequality technique and related lemmas, and obtain several new sufficient conditions for the oscillation of the equations. Meanwhile the relevant conclusions of existing literature have been improved and generalized. Finally, the main results are demonstrated with specific examples.
作者 孙玉虹 李德生 SUN Yuhong;LI Desheng(School of Science,Yanshan University,Qinhuangdao 066000,China)
机构地区 燕山大学理学院
出处 《应用数学》 CSCD 北大核心 2018年第4期741-748,共8页 Mathematica Applicata
基金 河北省自然科学基金面上项目(A2016203101)
关键词 振动性 时滞 三阶中立型 时间尺度 动力方程 Oscillation Delay Third-order neutral type Time scale Dynamic equation
  • 相关文献

参考文献3

二级参考文献34

  • 1HILGER S. Analysis on measure chains-a unified approach to continuous and discrete calculus[JJ. Results Math, 1990, 18:18-56.
  • 2BOHNER M, PETERSON A.. Dynamic Equations on Time Scales, an Introduction with Applications'M], Boston: Birkhauser, 200l.
  • 3AGARWAL R P, BOHNER M, OREGAN D, et al. Dynamic equations on time scales: a survey].I]. J Comput Appl Math, 2002, 141(1-2): 1-26.
  • 4AGARWAL R P, BOHNER M, LI Wan-tong. Nonoscillation and Oscillation: Theory for Functional Differ?ential Equations[M]. New York: Marcel Dekker, 2004.
  • 5AGARWAL R P, BOHNER M, SAKER S H. Oscillation of second order delay dynamic equations].I]. Cana?dian Applied Mathematics Quarterly, 2005, 13 (1): 1-18.
  • 6SA HINER Y. Oscillation of second order delay differential equations on time scales[JJ. Nonlinear Analysis, TMA, 2005, 63: e1073-e1080.
  • 7SAKER S H. Oscillation of second-order nonlinear neutral delay dynamic equations on time scales].I]. J Comp Appl Math, 2006, 187(2): 123-14l.
  • 8ZHANG Quan-xin, GAO Li. Oscillation criteria for second-order half-linear delay dynamic equations with damping on time scales].I], Sci Sin Math, 2010, 40(7): 673-682.
  • 9YANG Jia-shan. Oscillation for a class of second-order nonlinear dynamic equation on time scales].I]. Journal of Sichuan University (Natural Science Edition), 2011, 48(2): 278-282.
  • 10LIU Ai-Iian , ZHU Si-ming, WU Hong-wu. Oscillation criteria for second order dynamic equations on time scales].I]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(2): 9-12.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部