期刊文献+

基于机器视觉的板球走迷宫系统设计 被引量:1

下载PDF
导出
摘要 板球走迷宫系统是一种建立在板球控制系统基础上,对图像处理进一步强化的控制系统,通过分析板球走迷宫系统对多特征图像处理的要求以及二维平面运动控制,设计了以树莓派为图像处理平台,以OpenCV+Linux+Python为软件基础,以STM32为平板控制芯片。上层系统(树莓派)以图像处理作为核心,依靠开源视觉库OpenCV实现板球走迷宫系统的多特征图像处理。下层系统(STM32)接收上层系统发送的串口数据,结合平板倾角,通过PID控制方法控制芯片输出PWM驱动数字舵机,从而实现板球在平板上的运动控制,以达到走迷宫的效果。软件算法方面,上层系统软件算法采用Python语言编程,实现图像处理、串口信息发送。下层系统采用C语言编程,实现串口数据解析、PID控制功能和系统参数调试及显示功能。 The cricket-walking maze system is a control system that is based on a cricket ball control system and further strengthens the image processing. In this paper, by analyzing the requirements of multi-characteristic image processing and the two-dimensional plane motion control of the cricket-walking maze system, the Raspberry Pi is used as the image processing platform, OpenCV +Linux +Python is used as the software foundation, and STM32 is the tablet control chip. The upper layer system(Raspberry Pi) uses image processing as its core, relying on open source vision library OpenCV to realize multi-feature image processing of the cricket-walking maze system. The lower layer system(STM32) receives the serial port data sent by the upper layer system and combines the tilt angle of the flat panel to control the chip output PWM to drive the digital servo via the PID control method so as to realize the movement control of the cricket ball on the flat panel to achieve the effect of walking the maze.In terms of software algorithms, the upper-level system software algorithm uses Python language programming to implement image processing and serial port information transmission. The lower system uses C language programming to implement serial data analysis, PID control functions, and system parameter debugging and display functions.
出处 《科学技术创新》 2018年第27期66-70,共5页 Scientific and Technological Innovation
基金 浙江省基础公益研究计划项目(LGF18F010008)
关键词 树莓派 OpenCV+Linux+Python STM32 Raspberry Pi OpenCV+Linux+Python STM32
  • 相关文献

参考文献6

二级参考文献17

  • 1王瑛楠,高满屯.基于嵌入式Linux的视频采集与传输系统的设计[J].现代制造工程,2007(3):48-50. 被引量:4
  • 2R.Dechter and J.Pearl. Generalized best-first search strategies and the optimality of A*.JACM,32(3):505-536.1985.
  • 3R.E.Korf. Real-time heuristic search. Artificial Intelligence, 42 (3):189-211, 1990.
  • 4张海涛,程荫杭.基于A*算法的全局路径搜索[J].微计算机信息,2007,23(17):238-239. 被引量:38
  • 5Magnus Lie Hetland.Pyhton 基 础教程 [M].2 版.北 京 :人民邮电出版社,2014.
  • 6Bradbury Alex,Everard Ben. 树 莓 派 Python 编 程 指 南 [M]. 王 文峰,译.北京:机械工业出版社,2015.
  • 7Richard Blum,Christine Bresnahan. 树 莓派 Python 编 程入门与实践[M].北京:人民邮电出版社,2015.
  • 8P Kaew Tra Kul Pong,R Bowden.An Improved Adaptive Back-ground Mixture Model for Real -time Tracking with ShadowDetection[D].Middlesex Brunel University,2002.
  • 9Zoran Zivkovic.Improved Adaptive Gaussian Mixture Modelfor Background Subtraction [D].Enschede:University of Ams-terdam,2005.
  • 10Adrian Rosebrock.Install Open CV and Python on your Rasp-berry Pi 2 and B+[EB/OL].http:// http:// www.pyimagesearch.com/2015/02/23/install -opencv -and -python -on -your -rasp-berry-pi-2-and-b /.

共引文献49

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部