期刊文献+

一种可移动检测机器人站位规划策略 被引量:6

A Base Position Planning Strategy for a Mobile Inspection Robot
下载PDF
导出
摘要 针对大型舱体舱外有效载荷支架检测过程中机器人站位难以确定的问题,提出一种规划策略。首先,结合机器人正运动学构建检测环境的数学模型,分别从舱体轴向与径向初步划分工作区域。然后,基于遗传算法(GA)优化检测视点次序并对工作区域栅格化处理,结合工作区域内对应视点位姿信息及关节转角约束,通过机器人逆运动学求得满足约束条件站位。最后,考虑不同关节转角误差对机器人末端精度和机器人运行过程安全性的影响,对检测过程各关节角度变化方差加权处理并构造优化函数。通过算例验证了所构建的模型及方法的可行性,结果表明该策略能够得到满足检测需求的优化站位。 Aiming at the problem that the robot base position is difficult to be identified during the inspection process for outboard brackets,a planning strategy is proposed. Firstly,the mathematical model of the inspection environment is constructed based on the forward kinematics of the robot,and the working area is divided from the axial and radial directions. Afterwards,based on the genetic algorithm( GA),the order of the viewpoints is optimized and the working area is rasterized. In view of the position and orientation information of the corresponding viewpoints in the working area and the joint corner constraint,the constrained base positions are obtained by the robot inverse kinematics. Finally,considering the influence of the different joint rotation errors on the robot end precision and the safety of the robot working process,the variance of each joint angle of the inspection process is weighted and the optimization function is constructed. A practical case is illustrated to prove the efficiency and validity of the proposed method.
作者 林晓青 杨继之 乐毅 张斌 LIN Xiao-qing;YANG Ji-zhi;YUE Yi;ZHANG Bin(Beijing Spaeeerafts,Beijing 100094,China)
出处 《宇航学报》 EI CAS CSCD 北大核心 2018年第9期1030-1037,共8页 Journal of Astronautics
基金 国家重点研发计划资助(2017YFB1301800)
关键词 检测机器人 站位规划 逆运动学 关节加权方差 Inspection robot Base position planning Inverse kinematics Joint weighted variance
  • 相关文献

参考文献4

二级参考文献25

  • 1邱吉宝,王建民.运载火箭模态试验仿真技术研究新进展[J].宇航学报,2007,28(3):515-521. 被引量:30
  • 2梁俊龙,谭永华,孙宏明.补燃发动机总体布局动态设计研究[J].火箭推进,2005,31(4):1-7. 被引量:2
  • 3Bolmsjo G,Olsson M,Cederberg P. Robotic Arc Welding-trendsand Developments for Higher Autonomy[J].The Industrial Robot,2002,(2):98-104.
  • 4Agnetic A,Macchiaroli R. Modelling and Optimization of the Assembly Process in a Flexible Cell for Aircraft Panel Manufacturing[J].Journal of Production Research,1998,(3):815-836.doi:10.1080/002075498193705.
  • 5Summers M. Robot Capability Test and Development of Industrial Robot Positioning System for the Aerospace Industry[J].SAE Transactions,2005,(1):1108-1118.
  • 6Jayaweera N,Webb P. Adaptive Robotic Assembly of Compliant Aero-structure Components[J].{H}ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING,2007,(2):180-194.doi:10.1016/j.rcim.2006.04.002.
  • 7田威;廖文和;万世明.一种用于工业机器人的空间立体网格精度补偿方法[P]中国,2011101132462011.
  • 8Chedmail P, Wenger P. Design and Positioning of a Robot in an Environment with Obstacles Using ()p- rimal ResearchEC~//1989 IEEE International Con ference on Robotics and Automation. Scottsdale, 1989:1069-1074.
  • 9Kats V. Minimizing the Cycle Time of Multiple- product Processing Networks with a Fixed Operation Sequence, Setups, and Time-window Constraints[J].European Journal of Operational Research, 2008, 187:1196-1211.
  • 10Chittajallu S K,Sommer H J. Layout Design for Ro- botic Assembly Workcells[R~. AD86-409 ,Technical Paper SME,1986 ..759-769.

共引文献31

同被引文献52

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部